Mathematics Faculty Research
Title
On Huppert's Conjecture for Alternating Groups of Low Degrees
Document Type
Article
Publication Date
Summer 6-2015
Abstract
Bertram Huppert conjectured in the late 1990s that the nonabelian simple groups are determined up to an abelian direct factor by the set of their character degrees. Although the conjecture has been established for various simple groups of Lie type and simple sporadic groups, it is expected to be difficult for alternating groups. In [5], Huppert verified the conjecture for the simple alternating groups An of degree up to 11. In this paper, we continue his work and verify the conjecture for the alternating groups of degrees 12 and 13. Read More: http://www.worldscientific.com/doi/abs/10.1142/S1005386715000267
Publication Title
Algebra Colloquium
Volume
22
Issue
2
First Page
293
Last Page
293
Recommended Citation
Nguyen, Hung Ngox; Tong-Viet, Hong P.; and Wakefield, Thomas P., "On Huppert's Conjecture for Alternating Groups of Low Degrees" (2015). Mathematics Faculty Research. 6.
https://ideaexchange.uakron.edu/math_ideas/6