Date of Last Revision

2023-05-03 05:19:02

Major

Biology

Degree Name

Bachelor of Science

Date of Expected Graduation

Spring 2018

Abstract

In order to improve upon the utilization of poly(ethylene glycol) (PEG) microgel-based scaffolds in drug delivery applications, this work explores the use of degradable and non-degradable PEG for tunable scaffolds. Previously, issues concerning the required uniformity in microgel size and low polydispersity index have been encountered. As such, methods of refining polymer synthesis, microgel fabrication, and microgel size separation were explored. Overall, no solution has been found to correct the issue for the microgels were still observed to have high polydispersity index regardless of varied troubleshooting alterations.

Research Sponsor

Dr. Rebecca Willits

First Reader

Nader Taha

Second Reader

Naman AL

Included in

Biomaterials Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.