Polymer Science Faculty Research

Title

The influence of binary processing additives on the performance of polymer solar cells

Document Type

Article

Publication Date

Winter 12-2014

Abstract

In this study, we report the investigation of the influence of binary processing additives, 1,8-octanedithiol (ODT) and 1-chloronaphthalene (CN) on the performance of polymer solar cells (PSCs). It was found that the power conversion efficiency (PCE) can be enhanced to 8.55% from the PSCs processed with binary processing additives as compared with similar to 6.50% from the PSCs processed with either ODT or CN processing additives. With binary processing additives, the crystallinity of the electron donor polymer, poly[[4,8bis[( 2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2 ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]], was elevated, which in turn facilitated charge transport within the bulk heterojunction (BHJ) layer, resulting in a high short-circuit current and large fill factor. By photophysical studies, we further found that the high PCE is majorly attributed to the minimized nongeminate recombination by controlling the kinetic film morphologies of the BHJ composite by binary solvent processing additives.

Publication Title

Nanoscale

Volume

6

Issue

23

First Page

14297

Last Page

14304

Share

COinS