Polymer Science Faculty Research

Title

The Nature and Role of Periosteum in Bone and Cartilage Regeneration

Document Type

Article

Publication Date

2011

Abstract

This study was undertaken to determine whether periosteum from different bone sources in a donor results in the same formation of bone and cartilage. In this case, periosteum obtained from the cranium and mandible (examples of tissue supporting intramembranous ossification) and the radius and ilium (examples of tissues supporting endochondral ossification) of individual calves was used to produce tissue-engineered constructs that were implanted in nude mice and then retrieved after 10 and 20 weeks. Specimens were compared in terms of their osteogenic and chondrogenic potential by radiography, histology, and gene expression levels. By 10 weeks of implantation and more so by 20 weeks, constructs with cranial periosteum had developed to the greatest extent, followed in order by ilium, radius, and mandible periosteum. All constructs, particularly with cranial tissue although minimally with mandibular periosteum, had mineralized by 10 weeks on radiography and stained for proteoglycans with safranin-O red (cranial tissue most intensely and mandibular tissue least intensely). Gene expression of type I collagen, type II collagen, runx2, and bone sialoprotein (BSP) was detectable on QRT-PCR for all specimens at 10 and 20 weeks. By 20 weeks, the relative gene levels were: type I collagen, ilium >> radial ≥ cranial ≥ mandibular; type II collagen, radial > ilium > cranial ≥ mandibular; runx2, cranial >>> radial > mandibular ≥ ilium; and BSP, ilium ≥ radial > cranial > mandibular. These data demonstrate that the osteogenic and chondrogenic capacity of the various constructs is not identical and depends on the periosteal source regardless of intramembranous or endochondral ossification. Based on these results, cranial and mandibular periosteal tissues appear to enhance bone formation most and least prominently, respectively. The appropriate periosteal choice for bone and cartilage tissue engineering and regeneration should be a function of its immediate application as well as other factors besides growth rate.

Publication Title

Cells Tissues Organs

Volume

194

Issue

2-4

First Page

320

Last Page

325

Share

COinS