Polymer Science Faculty Research

Amine-promoted organosilicate hydrolysis mechanism at near-neutral pH

Nita Sahai, The University of Akron

Abstract

Proteins bearing polylysine moeities and histidine and serine amino-aicd residues, isolated from diatoms and sponges, are known to promote biological nanoporous silica formation [1, 2]. Using 29Si NMR, we have shown quantitatively that monoamines and small polyamines can chemically accelerate the hydrolysis and condensation rates of organosilicate starting materials, in biomimetic silica synthesis pathways, at circum- neutral pHs and room temperature [3, 4]. The present study is focused on understanding the mechanistic role of these amines in catalyzing the hydrolysis step that precedes condensation [5]. We conducted 29Si NMR experimental studies over a range of temperature and pHs for the hydrolysis rates of trimethylethoxysilane (TMES), a model compound with only one hydrolyzable bond. Experimental results were combined with quantum mechanical hybrid Density Functional Theory calculations of putative intermediate and transition state structures for TMES and tetramethylorthosilicate (TMOS) which has four hydrolyzable bonds. Comparison of calculated energies with experimentally-determined activation energies indicated that amines promote TMES hydrolysis mainly due to the amine's acidity at neutral pH. The proton released by the amine is transferred to the organosilicate, producing a protonated, ethoxy leaving group that can be displaced by water in an SN2 reaction. For TMOS, the activation energy of proton-transfer coupled with SN2 substitution is comparable to that for Corriu's nucleophile-activated nucleophilic displacement mechanism [6], such that the mechanism of amine-catalyzed hydrolysis is mostly dependent on the ambient pH conditions as well as the type of amine. The molecular mechanisms of hydrolysis and aggregation are reflected, ultimately, on the larger scale in the silica morphology where amines promoting faster hydrolysis result in glassy products compared to slower hydrolyzing amines forming particulate silica [7, 8].