Polymer Engineering Faculty Research

Title

Fast in situ copolymerization of PET/PEN blends by ultrasonically-aided extrusion

Document Type

Article

Publication Date

Fall 2010

Abstract

An ultrasonically-aided extrusion process was developed for fast in situ compatibilization of immiscible polymer blends. PET, PEN, and their 50/50 blend were ultrasonically extruded at various amplitudes. PET underwent homopolymerization and degradation, respectively, at ultrasonic amplitudes of 7.5 and 10 μm, while PEN underwent degradation at amplitudes of 5, 7.5, and 10 μm. MALDI-TOF mass spectrometry revealed greater amounts of hydroxyl and carboxyl terminated oligomers in ultrasonically treated PET and PEN, indicating their greater reactivity. Ultrasonic treatment at short residence time led to the enhancement of transesterification reaction in the PEN/PET blend, as shown by 1H NMR and MALDI-TOF, indicating greater randomization with ultrasonic treatment. The latter was also observed through a shift in Tg that closely follows Gibbs–DiMarzio relation and an increase in viscosity of blend with treatment at an amplitude of 10 μm. No crystallinity was observed in the blend due to the already high level of transesterification introduced by extrusion without treatment. Accordingly, crystallinity, mechanical properties, oxygen permeability, and optical clarity of the blend were not influenced by ultrasonic treatment.

Volume

51

First Page

1071

Last Page

1081

Share

COinS