Polymer Engineering Faculty Research
Title
The Effect of TiO2 as a Pigment in a Polyurethane/Polysiloxane Hybrid Coating/Aluminum Interface Based on Damage Evolution
Document Type
Article
Publication Date
Summer 6-2015
Abstract
The effect of titanium oxide as an additive on the performance of a polyurethane/polysiloxane hybrid coating was characterized by an electrochemical approach. The performance evolution was quantified by exposing the hybrid coating on an aluminum substrate to NaCl solution at pH 5 over time. Real-time measurements were performed to quantify and correlate the mechanisms that occur at the coating/substrate interface. Electrochemical impedance spectroscopy (EIS) quantified the hybrid coating/substrate interface performance over the course of the 263 days of exposure, and electrically passive elements described and characterized the degradation/performance stages upon exposure to the acidic NaCl solution.
The addition of TiO2 produced hydrophobicity functionality, and TiO2 acted as a physical barrier layer that influenced the initial damage stage. Different exposure times were associated the different stages of damage evolution for the hybrid coating and coating/substrate interfaces. Electrochemical testing with high-resolution techniques such as AFM (atomic force microscope) and IFM (infinite focus microscope) characterized the coating surface and the interface performance and resolved the surface and defect formation observed with different levels of TiO2 content. Of the systems tested, the system with 10 wt% TiO2 provided the best corrosion inhibition.
Publication Title
Progress in Organic Coatings
Volume
83
First Page
36
Last Page
46
Recommended Citation
Maya-Visuet, Enrique; Gao, Tongzhai; Soucek, Mark; and Castaneda, Homero, "The Effect of TiO2 as a Pigment in a Polyurethane/Polysiloxane Hybrid Coating/Aluminum Interface Based on Damage Evolution" (2015). Polymer Engineering Faculty Research. 2338.
https://ideaexchange.uakron.edu/polymerengin_ideas/2338