Polymer Engineering Faculty Research
Title
Fabrication of Porous Carbon/TiO2 Composites through Polymerization-Induced Phase Separation and Use As an Anode for Na-Ion Batteries
Document Type
Article
Publication Date
Winter 12-20-2014
Abstract
Polymerization-induced phase separation of nanoparticle-filled solution is demonstrated as a simple approach to control the structure of porous composites. These composites are subsequently demonstrated as the active component for sodium ion battery anode. To synthesize the composites, we dissolved/dispersed titanium oxide (anatase) nanoparticles (for sodium insertion) and poly(hydroxybutyl methacrylate) (PHBMA, porogen) in furfuryl alcohol (carbon precursor) containing a photoacid generator (PAG). UV exposure converts the PAG to a strong acid that catalyzes the furfuryl alcohol polymerization. This polymerization simultaneously decreases the miscibility of the PHBMA and reduces the mobility in the mixture to kinetically trap the phase separation. Carbonization of this polymer composite yields a porous nanocomposite. This nanocomposite exhibits nearly 3-fold greater gravimetric capacity in Na-ion batteries than the same titanium oxide nanoparticles that have been coated with carbon. This improved performance is attributed to the morphology as the carbon content in the composite is five times that of the coated nanoparticles. The porous composite materials exhibit stable cyclic performance. Moreover, the battery performance using materials from this polymerization-induced phase separation method is reproducible (capacity within 10% batch-to-batch). This simple fabrication methodology may be extendable to other systems and provides a facile route to generate reproducible hierarchical porous morphology that can be beneficial in energy storage applications.
Publication Title
ACS Applied Materials & Interfaces
Volume
6
Issue
23
First Page
21011
Last Page
21018
Recommended Citation
Lee, Jeongwoo; Chen, Yu-Ming; Zhu, Yu; and Vogt, Bryan, "Fabrication of Porous Carbon/TiO2 Composites through Polymerization-Induced Phase Separation and Use As an Anode for Na-Ion Batteries" (2014). Polymer Engineering Faculty Research. 2310.
https://ideaexchange.uakron.edu/polymerengin_ideas/2310