Polymer Engineering Faculty Research
Title
Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte
Document Type
Article
Publication Date
6-2012
Abstract
Bulk heterojunction (BHJ) polymer solar cells (PSCs) that can be fabricated by solution processing techniques are under intense investigation in both academic institutions and industrial companies because of their potential to enable mass production of flexible and cost-effective alternative to silicon-based solar cells. A combination of novel polymer development, nanoscale morphology control and processing optimization has led to over 8% power conversion efficiencies (PCEs) for BHJ PSCs with a conventional device structure. Attempts to develop PSCs with an inverted device structure as required for achieving high PECs and good stability have, however, met with limited success. Here, we report that a high PCE of 8.4% under AM 1.5G irradiation was achieved for BHJ PSCs with an inverted device structure. This high efficiency was obtained through interfacial engineering of solution-processed electron extraction layer, leading to facilitate electron transport and suppress bimolecular recombination. These results provided an important progress for solution-processed PSCs, and demonstrated that PSCs with an inverted device structure are comparable with PSCs with the conventional device structure.
Publication Title
Energy & Environmental Science
Volume
5
Issue
8
First Page
8208
Last Page
8214
Recommended Citation
Yang, Tingbin; Wang, Ming; Duan, Chunhui; Hu, Xiaowen; Huang, Lin; Peng, Junbiao; Huang, Fei; and Gong, Xiong, "Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte" (2012). Polymer Engineering Faculty Research. 1191.
https://ideaexchange.uakron.edu/polymerengin_ideas/1191