Polymer Engineering Faculty Research
Title
Challenges in the fabrication of mesoporous carbon films with ordered cylindrical pores via phenolic oligomer self-assembly with triblock copolymers
Document Type
Article
Publication Date
Fall 2010
Abstract
Mesoporous phenol formaldehyde (PF) polymer resin and carbon films are prepared by a solution self-assembly of PF oligomers with amphiphilic triblock copolymers. After thermopolymerization of the PF to cross-link the network, the films show an ordered morphology as determined by X-ray diffraction and grazing incidence small-angle X-ray scattering (GISAXS). Our results show that the amphiphilic triblock copolymer template greatly influences the stability of the final porous mesostructures. The pyrolysis of the two-dimensional (2-D) hexagonal films with p6mm symmetry templated by Pluronic F127 yields a disordered porous structure following the template removal. Conversely, films templated by Pluronic P123 can exhibit well-ordered cylindrical pores after the template removal, but the solution composition range to yield ordered cylindrical mesopores is significantly reduced (nearly 70%) for thin films in comparison to bulk powders. We propose two dominant difficulties in fabricating well-ordered cylindrical mesopores in films: first, the stress from contraction during the pyrolysis can lead to a collapse of the mesostructure if the wall thickness is insufficient, and second, the surface wetting behavior in thin films leads to a small compositional range.
Volume
4
Recommended Citation
Vogt, Bryan, "Challenges in the fabrication of mesoporous carbon films with ordered cylindrical pores via phenolic oligomer self-assembly with triblock copolymers" (2010). Polymer Engineering Faculty Research. 1027.
https://ideaexchange.uakron.edu/polymerengin_ideas/1027