Document Type

Article

Publication Date

1-1995

Abstract

Thermodynamic phase equilibria of a polymer dispersed liquid crystal (PDLC) consisting of
monomeric liquid crystals and a polymer have been investigated theoretically and experimentally.
The equilibrium limits of phase separation as well as phase transition of a PDLC system were
calculated by taking into consideration the Flory–Huggins (FH) theory for the free energy of mixing
of isotropic phases in conjunction with the Maier–Saupe ~MS! theory for phase transition of a
nematic liquid crystal. The correspondence between the Landau–de Gennes expansion and the
Maier–Saupe theory was found and the coefficients were evaluated. The calculation based on the
combined FH-MS theory predicted a spinodal line within the coexistence of the nematic–isotropic
region in addition to the conventional liquid–liquid spinodals. The cloud point phase diagram was
determined by means of polarized optical microscopy and light scattering for a polybenzyl
methacrylate/E7 (PBMA/E7) PDLC system. The calculated phase diagrams were tested with the
experimental cloud points, assuming the Flory–Huggins interaction parameter simply to be a
function of temperature.

Publication Title

Journal of Chemical Physics

Volume

102

Issue

1

First Page

556

Last Page

562

Required Publisher's Statement

Copyright 1995 American Institute of Physics. The original published version of this article may be found at http://dx.doi.org/10.1063/1.469435.

Share

COinS