Mechanical Engineering Faculty Research

Document Type

Conference Proceeding

Publication Date

2008

Abstract

Microstereolithography (μSL) technology can fabricate three-dimensional (3D) tissue engineered scaffolds with controlled biochemical and mechanical micro-architectures. A μSL system for tissue engineering was developed using a Digital Micromirror Device (DMDTM) for dynamic pattern generation and an ultraviolet (UV) lamp filtered at 365 nm for crosslinking the photoreactive polymer solution. The μSL system was designed with x-y resolution of ~2 μm and a vertical (z) resolution of ~1 μm. To demonstrate the use of μSL in tissue engineering, poly(propylene fumarate) (PPF) was synthesized with a molecular weight of ~1200 Da. The viscosity of the PPF was reduced to ~150 cP (at 50 o C) by mixing with diethyl fumarate (DEF) in the ratio of 7:3 (w/w). Finally, ~2 % (w/w) of (bis(2,4,6- trimethylbenzoyl) phenylphosphine oxide (BAPO) was added to the solution to serve as a photoinitiator. Cure depth experiments were performed to determine the curing characteristics of the synthesized PPF, and the resulting system and photopolymer were used to construct a variety of 3D porous scaffolds with interconnected pores between 100 and 150 μm and a micro-needle array with height of ~800 μm and individual tip diameters of ~20 μm. SEM and microscope images of the micro-architectures illustrate that the developed μSL system is a promising technology for producing biodegradable and biocompatible microstructures.

Publication Title

19th Solid Freeform Fabrication Symposium

First Page

652

Last Page

675

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.