Mechanical Engineering Faculty Research
Title
Dynamics of Atomic Stick-Slip Friction Examined with Atomic Force Microscopy and Atomistic Simulations at Overlapping Speeds
Document Type
Article
Publication Date
4-6-2015
Abstract
Atomic force microscopy (AFM) and atomistic simulations of atomic friction with silicon oxide tips sliding on Au(111) are conducted at overlapping speeds. Experimental data unambiguously reveal a stick-slip friction plateau above a critical scanning speed, in agreement with the thermally activated Prandtl-Tomlinson (PTT) model. However, friction in experiments is larger than in simulations. PTT energetic parameters for the two are comparable, with minor differences attributable to the contact area’s influence on the barrier to slip. Recognizing that the attempt frequency may be determined by thermal vibrations of the larger AFM tip mass or instrument noise fully resolves the discrepancy. Thus, atomic stick-slip is well described by the PTT model if sources of slip-assisting energy are accounted for.
Publication Title
Physical Review Letters
Volume
114
Issue
14
First Page
146102
Recommended Citation
Liu, Xin Z.; Ye, Zhijiang; Dong, Yalin; Egberts, Philip; Carpick, Robert W.; and Martini, Ashlie, "Dynamics of Atomic Stick-Slip Friction Examined with Atomic Force Microscopy and Atomistic Simulations at Overlapping Speeds" (2015). Mechanical Engineering Faculty Research. 809.
https://ideaexchange.uakron.edu/mechanical_ideas/809