Mechanical Engineering Faculty Research
Title
An Investigation of the Cyclic Fatigue and Final Fracture Behavior of a Titanium Alloy
Document Type
Article
Publication Date
Spring 3-2008
Abstract
In this technical manuscript the cyclic stress amplitude controlled fatigue properties and fracture behavior of an emerging titanium alloy (referred to by its designation as ATI 425TM by the manufacturer) is presented and discussed. The alloy was provided as rod stock in the fully annealed condition. Test specimens of the as-received alloy were cyclically deformed under total stress amplitude control at two different stress ratios (R = 0.1 and R = 0.3) with the purpose of establishing the conjoint and mutually interactive influences of magnitude of cyclic stress, load ratio and intrinsic microstructural effects on cyclic fatigue life, final fracture behavior and viable mechanisms governing failure at the microscopic level. The high cycle fatigue resistance of this titanium alloy is described in terms of maximum stress, load ratio, and maximum elastic strain. The final fracture behavior of the alloy under cyclic loading conditions is discussed in light of the mutually interactive influences of intrinsic microstructural features, magnitude of cyclic stress, load ratio and resultant fatigue life.
Publication Title
Key Engineering Materials
Volume
378-379
First Page
271
Last Page
298
Recommended Citation
Srivatsan, Tirumalai S.; Kuruvilla, Mithun; and Park, Lisa, "An Investigation of the Cyclic Fatigue and Final Fracture Behavior of a Titanium Alloy" (2008). Mechanical Engineering Faculty Research. 659.
https://ideaexchange.uakron.edu/mechanical_ideas/659