Mechanical Engineering Faculty Research
Title
The Quasi Static Fracture Behavior of a Bulk Al-Cr-Fe Alloy Made by Consolidating Micron- and Nano-Sized Powders
Document Type
Article
Publication Date
Winter 1-2005
Abstract
Micron-sized powders of an Al-7Cr-1Fe alloy were prepared by the technique of Gas Atomization Reaction Synthesis (GARS) at the Ames Laboratory (Ames, Iowa, USA). A pre-alloyed stock of the aluminum alloy was melted and atomized in an inert environment. A mixture of micron-sized and nano-sized powder particles was consolidated in a vacuum environment using the technique of plasma pressure compaction (P2CTM). The powders were initially pulsed at 150oC for 10 minutes and subsequently consolidated at 550oC under a pressure of 40 MPa for 10 minutes. In this paper, the tensile deformation and fracture characteristics of the aluminum alloy are highlighted at two different test temperatures. An attempt is made to elucidate the microscopic mechanisms governing tensile response and fracture in light of the competing and mutually interactive influences of intrinsic microstructural features, deformation characteristics of the constituents of the material, and test temperature.
Publication Title
Journal of Metastable and Nanocrystalline Materials
Volume
23
First Page
255
Last Page
258
Recommended Citation
Srivatsan, Tirumalai S.; Givens, S.; Al-Hajri, Meslet; Petraroli, M.; Radhakrishnan, R.; and Sudarshan, T. S., "The Quasi Static Fracture Behavior of a Bulk Al-Cr-Fe Alloy Made by Consolidating Micron- and Nano-Sized Powders" (2005). Mechanical Engineering Faculty Research. 633.
https://ideaexchange.uakron.edu/mechanical_ideas/633