Mechanical Engineering Faculty Research
Title
A Study of Cyclic Fatigue, Damage Initiation, Damage Propagation, and Fracture of Welded Titanium Alloy Plate
Document Type
Article
Publication Date
Fall 9-25-2010
Abstract
In this paper, the influence of test specimen orientation and microstructure on cyclic stress-amplitude controlled fatigue response, damage initiation, damage propagation and fracture behavior of samples taken from a welded plate of titanium alloy is presented and discussed. Test specimens from the chosen alloy were prepared from an as-welded plate of the material with the stress axis both parallel (longitudinal) and perpendicular (transverse) to the deformed (rolling) direction of the plate. The test specimens were cyclically deformed at different values of maximum stress at a constant load ratio of 0.1, and the resultant cycles-to-failure was recorded. The fracture surfaces of the deformed and failed test specimens were examined in a scanning electron microscope to establish the macroscopic fracture mode, the intrinsic features on the fatigue fracture surface and the role of applied stress-microstructural feature interactions in establishing the microscopic mechanisms governing failure.
Publication Title
Materials Science and Engineering: A
Volume
527
Issue
24-25
First Page
6649
Last Page
6695
Recommended Citation
Srivatsan, Tirumalai S.; Bathini, Udaykar; Patnaik, Anil; and Quick, T., "A Study of Cyclic Fatigue, Damage Initiation, Damage Propagation, and Fracture of Welded Titanium Alloy Plate" (2010). Mechanical Engineering Faculty Research. 543.
https://ideaexchange.uakron.edu/mechanical_ideas/543