Mechanical Engineering Faculty Research

Title

Understanding the Influence of Copper Nanoparticles on Thermal Characteristics and Microstructural Development of a Tin-Silver Solder

Document Type

Article

Publication Date

Fall 10-2007

Abstract

This paper presents and discusses issues relevant to solidification of a chosen lead-free solder, the eutectic Sn-3.5%Ag, and its composite counterparts. Direct temperature recordings for the no-clean solder paste during the simulated reflow process revealed a significant amount of undercooling to occur prior to the initiation of solidification of the eutectic Sn-3.5%Ag solder, which is 6.5 °C, and for the composite counterparts, it is dependent on the percentage of copper nanopowder. Temperature recordings revealed the same temperature level of 221 °C for both melting (from solid to liquid) and final solidification (after recalescence) of the Sn-3.5%Ag solder. Addition of copper nanoparticles was observed to have no appreciable influence on melting temperature of the composite solder. However, it does influence solidification of the composite solder. The addition of 0.5 wt.% copper nanoparticles lowered the solidification temperature to 219.5 °C, while addition of 1.0 wt.% copper nanoparticles lowered the solidification temperature to 217.5 °C, which is close to the melting point of the ternary eutectic Sn-Ag-Cu solder alloy, Sn-3.7Ag-0.9Cu. This indicates the copper nanoparticles are completely dissolved in the eutectic Sn-3.5%Ag solder and precipitate as the Cu6Sn5, which reinforces the eutectic solder. Optical microscopy observations revealed the addition of 1.0 wt.% of copper nanoparticles to the Sn-3.5%Ag solder results in the formation and presence of the intermetallic compound Cu6Sn5. These particles are polygonal in morphology and dispersed randomly through the solder matrix. Addition of microsized copper particles cannot completely dissolve in the eutectic solder and projects a sunflower morphology with the solid copper particle surrounded by the Cu6Sn5 intermetallic compound coupled with residual porosity present in the solder sample. Microhardness measurements revealed the addition of copper nanopowder to the eutectic Sn-3.5%Ag solder resulted in higher hardness.

Publication Title

Journal of Materials Engineering and Performance

Volume

16

Issue

5

First Page

647

Last Page

654

Share

COinS