Mechanical Engineering Faculty Research
Title
Influence of Carbon Nanotubes and Processing on Cyclic Fatigue and Final Fracture Behavior of a Magnesium Alloy
Document Type
Article
Publication Date
Fall 11-2011
Abstract
Carbon nanotubes (CNT)-reinforced magnesium alloy (AZ31) was fabricated using the technique of solidification processing followed by hot extrusion. Test specimens of both the composite and the unreinforced alloy were cyclically deformed at two different load ratios spanning tension-tension loading (R = 0.1) and fully-reversed tension-compression (R= -1) loading under total stress amplitude-control. A comparison of the CNT reinforced magnesium alloy with the unreinforced counterpart revealed well over two hundred percent improvement in cyclic fatigue life at load ratio of 0.1 and about two-hundred and fifty percent improvement in the high cycle fatigue life under conditions of fully-reversed loading [R= -1.0]. At all values of maximum stress, the high cycle fatigue response of both the reinforced and unreinforced magnesium alloy was found to degrade at the lower load ratio (-1.0). The synergistic and interactive influences of reinforcement and processing on microstructural development, cyclic fatigue life and kinetics governing fracture behavior are presented and briefly discussed.
Publication Title
Advanced Materials Research
Volume
410
Issue
1
First Page
3
Last Page
16
Recommended Citation
Lau, Alan K.T.; Srivatsan, Tirumalai S.; Bhattacharyya, Debes; Zhang, Ming Qiu; and Ho, Mabel M. P., "Influence of Carbon Nanotubes and Processing on Cyclic Fatigue and Final Fracture Behavior of a Magnesium Alloy" (2011). Mechanical Engineering Faculty Research. 306.
https://ideaexchange.uakron.edu/mechanical_ideas/306