Mechanical Engineering Faculty Research

Title

A Constitutive Equation for Filled Rubber under Cyclic Loading

Document Type

Article

Publication Date

Spring 3-2011

Abstract

This paper describes experiments and the development of constitutive equations to predict the steady-state response of filled rubber under cyclic loading. An MTS servo-hydraulic machine was used to obtain the dynamic hysteresis curves for a filled rubber compound in uniaxial tension-compression. The material tests were performed with mean strains from −0.1 to 0.1, strain amplitudes ranging from 0.02 to 0.1, and strain rates between 0.01 and 10 s−1. Temporary material set, the Payne effect and rate-dependence were observed from the experimental results. A hyper-viscoelastic constitutive model was developed to characterize the dynamic response of the rubber. A cornerstone of this constitutive modeling was to devise a scheme to evaluate material set and a finite strain, non-linear viscoelastic law from the test data. Predictions of the dynamic hysteresis curves using the proposed constitutive equation were found to be in good agreement with the uniaxial test results.

Publication Title

International Journal of Non-Linear Mechanics

Volume

46

Issue

2

First Page

446

Last Page

456

Share

COinS