Mechanical Engineering Faculty Research

Title

A Three-Temperature Model of Selective Photothermolysis for Laser Treatment of Port Wine Stain Containing Large Malformed Blood Vessels

Document Type

Article

Publication Date

Spring 4-2014

Abstract

As congenital vascular malformations, port wine stain (PWS) is composed of ectatic venular capillary blood vessels buried within healthy dermis. In clinic, pulsed dye laser (PDL) in visible band (e.g. 585 nm) together with cryogen spray cooling (CSC) have become the golden standard for treatment of PWS. However, due to the limited energy deposition of the PDL in blood, large blood vessels are likely to survive from the laser irradiation. As a result, complete clearance of the lesions is rarely achieved. Assuming the local thermal non-equilibrium in skin tissue during the laser surgery, a three-temperature model is proposed to treat the PWS tissue as a porous media composed of a non-absorbing dermal matrix buried with the blood as well as the large malformed blood vessels. Three energy equations are constructed and solved coupling for the temperature of the blood in average-sized PWS vessels, non-absorbing dermal tissues and large malformed blood vessels, respectively. Subsequently, the thermal responses of human skin to visible (585 nm) and near-infrared (1064 nm) laser irradiations with various pulse durations in conjunction with cryogen spray cooling are investigated by the new model, and Arrhenius integral is used to analyze the thermal damage. The simulations show that the short pulse duration of 1.5 ms results in a higher selective heating of blood over epidermis, which will lead to a desired clinic outcome than the longer pulse duration. Due to a much deeper light penetration depth, laser irradiation with 1064 nm in wavelength is superior to that with 585 nm in treating patients with cutaneous hyper-vascular malformation. Complete coagulations are predicted in large-sized and deeply extending blood vessels by 1064 nm laser.

Publication Title

Applied Thermal Engineering

Volume

65

Issue

1-2

First Page

308

Last Page

321

Share

COinS