Date of Last Revision

2021-09-09 08:58:18

Major

Mathematics

Degree Name

Bachelor of Science

Date of Expected Graduation

Spring 2016

Abstract

For my Honors Research Project, I will be researching special properties of Rouquier blocks that represent the partitions of integers. This problem is motivated by ongoing work in representation theory of the symmetric group. For each integer n and each prime p, there is an object called a Rouquier block; this block can be visualized as a collection of points in a plane, each corresponding to a partition. In this group of points, we say a pair of points is “connected” if certain conditions on the partitions are met. We compare each partition with each other partition, add edges when we can, and we end up with a collection of points that are connected by some number of edges (note that two points are not connected by a line if the conditions are not met).

In my project, I will be finding a formula that will restrict the diameter of this graph. I want to minimize the distance between the two points that are the furthest away from each other. A formula to give the most efficient path is either impossible to find or is too complicated to be useful; rather, I will set a ceiling on this distance, so that, given any two blocks, I can give the largest “most efficient” path length possible.

Research Sponsor

James Cossey

First Reader

Jeffrey Riedl

Second Reader

Stefan Forcey

Comments

Additional research is in progress and new developments discussed in the conclusion may come forth in the future.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.