Title
Analysis of Branched Polymers by High Resolution Multidetector Size Exclusion Chromatography: Separation of the Effects of Branching and Molecular Weight Distribution
Document Type
Article
Publication Date
9-21-2011
Abstract
This article presents the SEC analysis of branched polyisobutylene PIB and polystyrene PS with high molecular weight and broad multimodal molecular weight distribution. Both polymers were synthesized using an inimer technique, which results in long-chain branched polymers with statistical branching and broad multimodal distributions. Using high resolution multidetector Size Exclusion Chromatography SEC the polymers were analyzed based on three branching factors: g = (Rz,br/Rz,lin)Mw; h = (〈Rh〉z,br/〈Rh〉z,lin)Mw ; and ρ = (R1/2/〈Rh〉z). It is generally accepted that for monodisperse branched polymers g and h < 1. In the case of our polydisperse PIB and PS, it was seen that g and h > 1, and ρ increases with molar mass and the number of chain ends as predicted earlier. The multidetector SEC system allowed for the separation of branching and polydispersity, reported here for the first time experimentally. The g parameter as a function of DPi was compared to the theory developed by Zimm and Stockmayer. The plots followed a similar trend, but were shifted by a factor related to the average chain length between branching points. The ρ parameter decreased with increasing DPi, as predicted theoretically by Kajiwara. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012
Publication Title
Journal of Polymer Science Part A: Polymer Chemistry
Volume
50
Issue
1
First Page
70
Last Page
79
Recommended Citation
Puskas, Judit; Burchard, Walther; Heidenreich, Andrew J.; and Dos Santos, Lucas, "Analysis of Branched Polymers by High Resolution Multidetector Size Exclusion Chromatography: Separation of the Effects of Branching and Molecular Weight Distribution" (2011). Chemical, Biomolecular, and Corrosion Engineering Faculty Research. 468.
https://ideaexchange.uakron.edu/chemengin_ideas/468