Title
Modeling, Simulation and Fabrication of Coated Structures Using the Dip Coating Technique
Document Type
Article
Publication Date
12-1-2010
Abstract
Using the dip coating technique, we fabricate erbia-coated quartz fibers and glass slides. Further we present a thin film model of the dip coating technique applied to the glass slides. The model includes evaporation of the solvent and a bulk reaction term to simulate the creation of the erbium oxide that forms the coating. Evolution equations for the solvent and coating thicknesses are developed and solved numerically. We study how the solvent evaporation rate, the bulk reaction rate, the dynamic viscosity, the angle of the inclined substrate, the characteristic depth of the solution thickness, the initial profile of the solution thickness, and the length of substrate affect the coating thickness. The model is calibrated using the experimental results to provide a tool for predicting the coating thickness.
Publication Title
Chemical Engineering Science
Volume
65
Issue
23
First Page
6169
Last Page
6180
Recommended Citation
Jittavanich, K.; Clemons, C. B.; Kreider, K. L.; Aljarrah, M.; Evans, Edward; and Young, G. W., "Modeling, Simulation and Fabrication of Coated Structures Using the Dip Coating Technique" (2010). Chemical, Biomolecular, and Corrosion Engineering Faculty Research. 418.
https://ideaexchange.uakron.edu/chemengin_ideas/418