Title
Fabrication and Characterization of Tio2--zno Composite Nanofibers
Document Type
Article
Publication Date
2-2011
Abstract
Tetraisopropyl titanate, zinc acetate dihydrate, and polyvinylpyrrolidone (PVP) were mixed to obtain a composite solution for producing TiO2–ZnO nanofibers. Electrospinning and subsequent calcination at 973 K were employed to produce composite metal-oxide nanofibers with diameters ranging from 50 to 150 nm. Characterization of the TiO2–ZnO composite nanofibers was carried out by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (XEDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible (UV–vis) spectrophotometry. TGA reveals a total weight loss of 49% and no change in mass above 873 K. The nanofibers are predominantly made of titania and exhibit two different energy band gap values of 3.0 and 3.5 eV. Our findings indicate that in the composite TiO2–ZnO nanofibers three different phases (anatase and rutile TiO2 and wurtzite ZnO) can co-exist and retain their individual characteristic properties.
Publication Title
Physica E: Low-dimensional Systems and Nanostructures
Volume
43
Issue
4
First Page
857
Last Page
861
Recommended Citation
Lotus, A. F.; Tacastacas, S. N.; Pinti, M. J.; Britton, L. A.; Stojilovic, N.; Ramsier, R. D.; and Chase, George, "Fabrication and Characterization of Tio2--zno Composite Nanofibers" (2011). Chemical, Biomolecular, and Corrosion Engineering Faculty Research. 369.
https://ideaexchange.uakron.edu/chemengin_ideas/369