Title
Size and Composition Control of Pt-in Nanoparticles Prepared by Seed-mediated Growth Using Bimetallic Seeds
Document Type
Article
Publication Date
Spring 2012
Abstract
A two-step method has been developed for precise size and composition control of bimetallic Pt–In nanoparticles. Very small (1.62 nm) PtIn seed nanoparticles with 1:1 metal ratio were prepared in the absence of capping agents followed by growth of Pt on their surface in the presence of oleyl amine as reducing and stabilizing agent. Nanoparticles with bulk compositions of Pt4In, Pt3In, and Pt2In could be synthesized with average diameter smaller than 3 nm. TEM, EDX, and XPS provided evidence for homogeneous growth without separate nucleation of pure platinum nanoparticles in the reaction solution. Pt3In nanoparticles were deposited onto SiO2 surface by incipient wetness impregnation. Temperature-induced changes in the particle surface were monitored by in situ IR spectroscopy and CO adsorption. It was found that surface alloy composition of the particles could be tuned by using oxidizing or reducing atmospheres.
Volume
28
Issue
7
First Page
3345
Last Page
3349
Recommended Citation
Peng, Zhenmeng, "Size and Composition Control of Pt-in Nanoparticles Prepared by Seed-mediated Growth Using Bimetallic Seeds" (2012). Chemical, Biomolecular, and Corrosion Engineering Faculty Research. 307.
https://ideaexchange.uakron.edu/chemengin_ideas/307