Title
Effect of Flm Thickness on the Antifouling Performance for Poly(Hydroxy-functional Methacrylates) Grafted Surfaces
Document Type
Article
Publication Date
Fall 2011
Abstract
The development of nonfouling biomaterials to prevent nonspecific protein adsorption and cell/bacterial adhesion is critical for many biomedical applications, such as antithrombogenic implants and biosensors. In this work, we polymerize two types of hydroxy-functional methacrylates monomers of 2-hydroxyethyl methacrylate (HEMA) and hydroxypropyl methacrylate (HPMA) into polymer brushes on the gold substrate via surface-initiated atom transfer radical polymerization (SI-ATRP). We systematically examine the effect of the film thickness of polyHEMA and polyHPMA brushes on their antifouling performance in a wide range of biological media including single-protein solution, both diluted and undiluted human blood serum and plasma, and bacteria culture. Surface plasmon resonance (SPR) results show a strong correlation between antifouling property and film thickness. Too thin or too thick polymer brushes lead to large protein adsorption. Surfaces with the appropriate film thickness of ∼25-45 nm for polyHPMA and ∼20-45 nm for polyHEMA can achieve almost zero protein adsorption (<0.3 ng/cm(2)) from single-protein solution and diluted human blood plasma and serum. For undiluted human blood serum and plasma, polyHEMA brushes at a film thickness of ∼20-30 nm adsorb only ∼3.0 and ∼3.5 ng/cm(2) proteins, respectively, while polyHPMA brushes at a film thickness of ∼30 nm adsorb more proteins of ∼13.5 and ∼50.0 ng/cm(2), respectively. Moreover, both polyHEMA and polyHPMA brushes with optimal film thickness exhibit very low bacteria adhesion. The excellent antifouling ability and long-term stability of polyHEMA and polyHPMA brushes make them, especially for polyHEMA, effective and stable antifouling materials for usage in blood-contacting devices.
Volume
27
Issue
8
First Page
4906
Last Page
4913
Recommended Citation
Zheng, Jie and Liu, Lingyan, "Effect of Flm Thickness on the Antifouling Performance for Poly(Hydroxy-functional Methacrylates) Grafted Surfaces" (2011). Chemical, Biomolecular, and Corrosion Engineering Faculty Research. 260.
https://ideaexchange.uakron.edu/chemengin_ideas/260