Title
Changing the Charge Distribution of B-helical Based Nanostructures Can Provide the Conditions for Charge Transfer
Document Type
Article
Publication Date
Fall 2007
Abstract
In this work we present a computational approach to the design of nanostructures made of structural motifs taken from left-handed b-helical proteins. Previously, we suggested a structural model based on the self-assembly of motifs taken from Escherichia coli galactoside acetyltransferase (Protein Data Bank 1krr, chain A, residues 131165, denoted krr1), which produced a very stable nanotube in molecular dynamics simulations. Here we modify this model by changing the charge distribution in the innercore of the system and testing the effect of this changeon thestructural arrangement of the construct. Our results demonstrate that it is possible to generate the proper conditions for charge transfer inside nanotubes based on assemblies of krr1 segment.
Volume
93
Issue
1
First Page
245
Last Page
253
Recommended Citation
Zheng, Jie, "Changing the Charge Distribution of B-helical Based Nanostructures Can Provide the Conditions for Charge Transfer" (2007). Chemical, Biomolecular, and Corrosion Engineering Faculty Research. 251.
https://ideaexchange.uakron.edu/chemengin_ideas/251