Date of Last Revision

2023-05-02 23:49:44

Major

Chemical Engineering

Degree Name

Bachelor of Science

Date of Expected Graduation

Spring 2017

Abstract

The purpose of this project is to begin to determine properties of polymer nanocomposites that make a suitable substrate for nanofiber sensors. In this work, sensitivity of a sodium ion selective sensor constructed with polyurethane was used as a benchmark for comparison with sensors constructed with nylon-6. The sensors were characterized using contact angle and chronoamperometry. Using an ANOVA analysis, the results showed that the multi-walled carbon nanotube type was a significant factor on sensor response both with and without additional functionalization of the polymer by calixarene. The weight percentage of polyurethane in the electrospinning solution was also statistically significant for sensors made with calixarene. The p-values were 0.031, 0.004, and 0.108, respectively with an alpha value of 0.05. While the p-value of 0.108 is higher than the alpha value, it was concluded to be significant due to its close proximity. Conclusions made from this project include that the nanotube types affect both the conductivity of the sensor as well as the Na+ binding to calixarene. The PU wt.% also affects sensor response, possibly due to the geometry of the sensor. The experimental parameters (nanotube type, nanotube loading, or PU wt.%) do not have a statistically significant effect on adhesion.

Research Sponsor

Chelsea Monty

First Reader

Hani Usm

Second Reader

Ed Evans

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.