Date of Last Revision

2023-05-02 18:47:09

Major

Applied Mathematics - BS/MS

Degree Name

Bachelor of Science

Date of Expected Graduation

Spring 2016

Abstract

Let M be the additive abelian group of 3-by-3 matrices whose entries are from the ring of integers modulo 9. The problem of determining all the normal subgroups of the regular wreath product group P=Z9≀(Z3 × Z3) that are contained in its base subgroup is equivalent to the problem of determining the subgroups of M that are invariant under two particular endomorphisms of M. In this thesis we give a partial solution to the latter problem by implementing a systematic approach using concepts from group theory and linear algebra.

Research Sponsor

Dr. Jeffrey Riedl

First Reader

Dr. Hung Nguyen

Second Reader

Dr. James Cossey

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.