Chemical and Biomolecular Engineering Faculty Research


Zwitterionic Carboxybetaine Polymer Surfaces and Their Resistance to Long-term Biofilm Formation

Document Type


Publication Date

Fall 2009


In this work, we report a systematic study of zwitterionic poly(carboxybetaine methacrylate) (pCBMA) grafted from glass surfaces via atom transfer radical polymerization (ATRP) for their resistance to long-term bacterial biofilm formation. Results show that pCBMA-grafted surfaces are highly resistant to non-specific protein adsorption (fibrinogen and undiluted blood plasma) at 25, 30 and 37 °C. Long-term (over 24 h) colonization of two bacterial strains (Pseudomonas aeruginosa PAO1 and Pseudomonas putidastrain 239) on pCBMA surface was studied using a parallel flow cell at 25, 30 and 37 °C. Uncoated glass cover slips were chosen as the positive reference. Results show that pCBMA coatings reduced long-term biofilm formation of P. aeruginosa up to 240 h by 95% at 25 °C and for 64 h by 93% at 37 °C, and suppressed P. putida biofilm accumulation up to 192 h by 95% at 30 °C, with respect to the glass reference. The ability of pCBMA coatings to resist non-specific protein adsorption and significantly retard bacterial biofilm formation makes it a very promising material for biomedical and industrial applications.



First Page


Last Page