Polymer Engineering Faculty Research

Title

Photochromism and photopolymerization induced mesophase transitions in mixtures of spiropyran and mesogenic diacrylate

Document Type

Article

Publication Date

11-17-2010

Abstract

A phase diagram of a binary mixture of photochromic molecule (spiropyran) and mesogenic diacrylate monomer has been established by means of differential scanning calorimetry and polarized optical microscopy. Subsequently, a theoretical phase diagram has been calculated by self-consistently solving the combined Flory−Huggins free energy for isotropic mixing, Maier−Saupe free energy for nematic ordering, and phase field free energy for crystal solidification. The phase diagram thus obtained consists of various coexistence regions involving single-phase crystals, pure nematic, crystal + liquid, crystal + nematic, and crystal + crystal coexistence gaps. Under UV irradiation, both SP and SP/RM257 mixtures showed the lowering trend of the melting points, which may be attributed to the plasticization effect by the merocyanine isomers. When UV light is illuminated on the 2/98 SP/RM257 mixture for an extended period, mesogenic diacrylate in the mixtures gets polymerized, showing the permanent fixation of isotropic and nematic structures due to the network formation of RM257 caused by the biradicals in the merocyanine intermediate.

Publication Title

The Journal of Physical Chemistry B

Volume

114

Issue

49

First Page

16381

Last Page

16387