Mechanical Engineering Faculty Research

Title

Detection of the Position, Direction and Speed of Sliding Contact with a Multi-Layer Compliant Tactile Sensor Fabricated Using Direct-Print Technology

Document Type

Article

Publication Date

Fall 9-2014

Abstract

A multi-layer resistance based compliant tactile sensor was fabricated using direct-print (DP) and soft molding processes. The sensor consists of two layers of embedded stretchable sensing elements sandwiched by three layers of a polyurethane rubber material. The sensing elements were created by the DP process using a photopolymer filled with multi-wall carbon nanotubes, which exhibit the property of piezoresistivity. The printed sensing elements were fully cured using ultraviolet light. The sensing elements within each layer of the sensor structure change in electrical resistance when external forces are applied. By processing the measured sensor signals, the fabricated sensor was able to detect the position of contact forces with a 3 mm spatial resolution, as well as their two-dimensional translation directions and speeds. Based on the results, it is concluded that the fabricated sensors are promising in robotic applications and the developed process and material can be a reliable and robust way to build highly stretchable tactile sensors.

Publication Title

Smart Materials and Structures

Volume

23

Issue

9

First Page

095008

Last Page

095008

Share

COinS