Chemical and Biomolecular Engineering Faculty Research

Title

Investigation of the Effect of Epoxide Structure on the Initiation Efficiency in Isobutylene Polymerizations Initiated by Epoxide/ticl 4 Systems

Document Type

Article

Publication Date

11-2003

Abstract

The effect of the chemical structure of styrene-based epoxides, namely, styrene epoxide (SE), α-methylstyrene epoxide (MSE), p-methylstyrene epoxide (pM-SE) and α-methyl-p-methylstyrene epoxide (pM-MSE), in conjunction with TiCl4, on the initiation efficiency (Ieff) in the carbocationic polymerization of isobutylene (IB) was investigated. SE yielded living polymerization, but the initiation efficiency was low when compared to MSE (Ieff=8% and 35%, respectively). pM-SE led to non-living IB polymerization, while pM-MSE revealed linear Mn-conversion plot and narrow MWD with a non-linear first order rate plot. Among the epoxides investigated, MSE was the best initiator to scale up the one-step synthesis of polyisobutylenes (PIBs) carrying one primary hydroxyl head group and one tertiary chloride end group. The hydroxyl functionality of these PIBs determined by 1H-NMR was Fn=1.09±0.16 from 24 experiments.

Publication Title

European Polymer Journal

Volume

39

Issue

11

First Page

2147

Last Page

2153