Chemical and Biomolecular Engineering Faculty Research

Title

Micropatterned Coumarin Polyester Thin Films Direct Neurite Orientation

Document Type

Article

Publication Date

Fall 10-27-2014

Abstract

Guidance and migration of cells in the nervous system is imperative for proper development, maturation, and regeneration. In the peripheral nervous system (PNS), it is challenging for axons to bridge critical-sized injury defects to achieve repair and the central nervous system (CNS) has a very limited ability to regenerate after injury because of its innate injury response. The photoreactivity of the coumarin polyester used in this study enables efficient micropatterning using a custom digital micromirror device (DMD) and has been previously shown to be biodegradable, making these thin films ideal for cell guidance substrates with potential for future in vivo applications. With DMD, we fabricated coumarin polyester thin films into 10 × 20 μm and 15 × 50 μm micropatterns with depths ranging from 15 to 20 nm to enhance nervous system cell alignment. Adult primary neurons, oligodendrocytes, and astrocytes were isolated from rat brain tissue and seeded onto the polymer surfaces. After 24 h, cell type and neurite alignment were analyzed using phase contrast and fluorescence imaging. There was a significant difference (p < 0.0001) in cell process distribution for both emergence angle (from the body of the cell) and orientation angle (at the tip of the growth cone) confirming alignment on patterned surfaces compared to control substrates (unpatterned polymer and glass surfaces). The expected frequency distribution for parallel alignment (≤15°) is 14% and the two micropatterned groups ranged from 42 to 49% alignment for emergence and orientation angle measurements, where the control groups range from 12 to 22% for parallel alignment. Despite depths being 15 to 20 nm, cell processes could sense these topographical changes and preferred to align to certain features of the micropatterns like the plateau/channel interface. As a result this initial study in utilizing these new DMD micropatterned coumarin polyester thin films has proven beneficial as an axon guidance platform for future nervous system regenerative strategies.

Publication Title

ACS Applied Materials & Interfaces

Volume

6

Issue

22

First Page

19655

Last Page

19667