Title
A Model for Analyzing Corrosion Data from Pulsed Proton Beam Irradiation Experiments
Document Type
Article
Publication Date
Summer 2002
Abstract
A model for analyzing corrosion data from pulsed proton beam irradiation experiments was developed from time-averaged corrosion rate measurements taken as a function of beam duty cycle and peak (instantaneous) beam current. The model assumes that there are two separate processes that control corrosion kinetics at the solution–metal interface: one during proton pulses and one between pulses. The model was evaluated using two techniques: a simulation program with integrated circuit emphasis (an integrated circuit analysis routine) and a numerical method. The model found that the corrosion rate between proton pulses was two orders of magnitude lower than the corrosion rate during a proton pulse. In addition, the model predicts that the corrosion rate during a pulse of protons correlates with peak current and that the time-average corrosion rate is weighted more heavily for duty cycle (repetition rate and gate length) than peak current. These findings explain apparent anomalies in time-averaged corrosion data; it was observed that for a fixed average beam current that the time-averaged corrosion rate for a 16 mA peak current was lower than the time-averaged corrosion rate at a peak current of 1.6 mA. This apparent anomaly is explained in the model by the higher duty cycle for the 1.6 mA case.
Volume
303
Issue
3
First Page
105
Last Page
114
Recommended Citation
Lillard, Robert, "A Model for Analyzing Corrosion Data from Pulsed Proton Beam Irradiation Experiments" (2002). Chemical, Biomolecular, and Corrosion Engineering Faculty Research. 432.
https://ideaexchange.uakron.edu/chemengin_ideas/432