Document Type
Article
Publication Date
2-1-2000
Abstract
A strategy for sequential hydrocarbon bioremediation is proposed. The initial O-2-requiring transformation is effected by aerobic resting cells, thus avoiding a high oxygen demand. The oxygenated metabolites can then be degraded even under anaerobic conditions when supplemented with a highly water-soluble alternative electron acceptor, such as nitrate. To develop the new strategy, some phenomena were studied by examining Pseudomonas aeruginosa fermentation. The effects of dissolved oxygen (DO) concentration on n-hexadecane biodegradation were investigated first. Under microaerobic conditions, the denitrification rate decreased as the DO concentration decreased, implying that the O-2-requiring reactions were rate limiting. The effects of different nitrate and nitrite concentrations were examined next. When cultivated aerobically in tryptic soy broth supplemented with 0 to 0.35 g of NO2--N per liter, cells grew in all systems, but the lag phase was longer in the presence of higher nitrite concentrations. However, under anaerobic denitrifying conditions, even 0.1 g of NO2--N per liter totally inhibited cell growth. Growth was also inhibited by high nitrate concentrations (>1 g of NO3--N per liter). Cells were found to be more sensitive to nitrate or nitrite inhibition under denitrifying conditions than under aerobic conditions. Sequential hexadecane biodegradation by P. aeruginosa was then investigated. The initial fermentation was aerobic for cell growth and hydrocarbon oxidation to oxygenated metabolites, as confirmed by increasing dissolved total organic carbon (TOC) concentrations. The culture was then supplemented with nitrate and purged with nitrogen (N-2). Nitrate was consumed rapidly initially. The live cell concentration, however, also decreased. The aqueous-phase TOC level decreased by about 40% during the initial active period but remained high after this period. Additional experiments confirmed that only about one-half of the derived TOC was readily consumable under anaerobic denitrifying conditions.
Publication Title
Applied and Environmental Microbiology
Volume
66
Issue
2
First Page
493
Last Page
498
Recommended Citation
Chayabutra, Chawala and Ju, Lu-Kwang, "Degradation of N-hexadecane and Its Metabolites by Pseudomonas Aeruginosa under Microaerobic and Anaerobic Denitrifying Conditions" (2000). Chemical, Biomolecular, and Corrosion Engineering Faculty Research. 21.
https://ideaexchange.uakron.edu/chemengin_ideas/21