Date of Graduation

Spring 2017

Document Type

Honors Research Project

Degree Name

Bachelor of Science


Chemical Engineering

Research Sponsor

Chelsea Monty

First Reader

Hani Usm

Second Reader

Ed Evans


The purpose of this project is to begin to determine properties of polymer nanocomposites that make a suitable substrate for nanofiber sensors. In this work, sensitivity of a sodium ion selective sensor constructed with polyurethane was used as a benchmark for comparison with sensors constructed with nylon-6. The sensors were characterized using contact angle and chronoamperometry. Using an ANOVA analysis, the results showed that the multi-walled carbon nanotube type was a significant factor on sensor response both with and without additional functionalization of the polymer by calixarene. The weight percentage of polyurethane in the electrospinning solution was also statistically significant for sensors made with calixarene. The p-values were 0.031, 0.004, and 0.108, respectively with an alpha value of 0.05. While the p-value of 0.108 is higher than the alpha value, it was concluded to be significant due to its close proximity. Conclusions made from this project include that the nanotube types affect both the conductivity of the sensor as well as the Na+ binding to calixarene. The PU wt.% also affects sensor response, possibly due to the geometry of the sensor. The experimental parameters (nanotube type, nanotube loading, or PU wt.%) do not have a statistically significant effect on adhesion.