Electrical and Computer Engineering Faculty Research


A cloud middleware for assuring performance and high availability of soft real-time applications

Document Type


Publication Date

Fall 10-2014


Applications are increasingly being deployed in the cloud due to benefits stemming from economy of scale, scalability, flexibility and utility-based pricing model. Although most cloud-based applications have hitherto been enterprise-style, there is an emerging need for hosting real-time streaming applications in the cloud that demand both high availability and low latency. Contemporary cloud computing research has seldom focused on solutions that provide both high availability and real-time assurance to these applications in a way that also optimizes resource consumption in data centers, which is a key consideration for cloud providers. This paper makes three contributions to address this dual challenge. First, it describes an architecture for a fault-tolerant framework that can be used to automatically deploy replicas of virtual machines in data centers in a way that optimizes resources while assuring availability and responsiveness. Second, it describes the design of a pluggable framework within the fault-tolerant architecture that enables plugging in different placement algorithms for VM replica deployment. Third, it illustrates the design of a framework for real-time dissemination of resource utilization information using a real-time publish/subscribe framework, which is required by the replica selection and placement framework. Experimental results using a case study that involves a specific replica placement algorithm are presented to evaluate the effectiveness of our architecture

Publication Title

Journal of Systems Architecture





First Page


Last Page