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Jarod Korn

1 Abstract

The random forest model proposed by Dr. Leo Breiman in 2001 [Bre01] is an ensemble machine
learning method for classification prediction and regression. In the following paper, we will conduct
an analysis on the random forest model with a focus on how the model works, how it is applied in
software, and how it performs on a set of data. To fully understand the model, we will introduce
the concept of decision trees, give a summary of the CART model, explain in detail how the random
forest model operates, discuss how the model is implemented in software, demonstrate the model by
applying it to a set of data, evaluate the performance of the model, and finally compare the model
and its performance to the simpler CART model. By the end, a reader should have an introductory
understanding of decision tree methodology, be knowledgeable about the mechanics of both the
CART and random forest models, an understand both the benefits and hindrances of the random
forest model.

2 Decision Trees

This section is based on material learned in the Applied Analytic Decision Trees course taught
at the University of Akron [Fri23]. Further reference information on decision trees was gathered
from IBM [IBMa] and cross validation information from the website geeksforgeeks [Geec].

2.1 Introduction

Decision trees are a statistical/machine learning method in which a categorical/quantitative
variable is predicted from a list of other categorical/quantitative variables. The variable being
predicted is referred to as the response while the variables being used to predict the response
variable are refereed to as predictors. Tree models use these predictors to split the data set into
subsets based on a criteria. While the splitting criteria varies from model to model, the general
idea is to always choose the split that leads to better predictions. These splits occur recursively,
meaning that every subset has the possibility to be further split into more subsets. In decision tree
terminology, the sets being split are referred to as parent nodes/parents and the resulting subsets
are referred to as child nodes/children. Once a certain stopping criteria is reached, the model will
no longer consider splits and the growth of the tree will cease. The child nodes at the end of the
branches are now refereed to as terminal nodes. It is important to note that, due to the splitting,
every data point in the original sample will fall into only one of the terminal nodes. Because of
this, the terminal nodes are used to classify the data based on the highest proportion of class in
that node.

2.2 Variance and Bias

With all statistical and machine learning methods, the primary goal is to always provide a good
estimation of the population parameter of interest. The accuracy of these estimations is found by
computing both the bias and variance of the estimator, resulting in the error estimate

Error = [Bias]2 + V ariance

Bias is the difference between the theoretical/predicted value and the true value. Essentially,
the larger the difference between our estimation and the true value, the larger the bias. Bias in
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2.3 Cross-Validation Jarod Korn

particular poses a problem for our estimation as the term is squared in the error estimate, meaning
that small deviations in the bias result in larger changes in the error.

Variance is the measure of the spread of the data. In predictive modeling, variance refers to the
change in the predictions over different training sets. That is, a model is highly variable if slightly
different training sets result in much different predictions.

The interaction between bias and variance is referred to as the bias-variance trade off as, in
practice, it is often not possible to reduce both at once. As such, the combinations of low bias, high
variance and high bias, low variance are referred to as overfitting and under fitting respectively. As
the names imply, overfitting is the tendency of a model to too close rely on training data, such that
the predictions are too variable. Conversely, underfitting is the tendency of the model to not rely
enough on the training set such that predictions do not actually predict the target population.

2.3 Cross-Validation

Cross-validation is a means of measuring how overfit a model is by splitting the original dataset
into multiple subsets. The number of subsets the original dataset is broken into is not a fixed value
and can be chosen by the analyst. Typically a split of either 2, 5, or 10 is chosen depending on the
size of the dataset and available computational power. After the splits, one of the subsets is then
chosen to be the testing dataset while the others are collected into the training dataset [Geec].

The training dataset is the subset or collection of subsets that will be used to build/train
the model. The testing dataset is the subset that the model will be run on to test the model’s
performance. The benefit of this validation is that it allows analysts to compare the performance
of the training and testing sets. Should the performance significantly differ between the training
and testing sets, then the model is likely overfit.

Generally speaking, the training data set needs to be large enough to build the model, but not
so large that the testing data set is too small. The typical range of proportions for the data sets
is between a 50:50 split and a 80:20 split depending on the size of the original data set. A larger
data set can afford to use a higher split ratio whereas a smaller data set can not. Because of this
convention, decision tree models require a relatively large sample of data.

2.4 Prediction Measures

2.4.1 Confusion Matrix

The confusion matrix of a decision tree is a cross tabulation table of the predicted classifications
vs the actual classifications from the data. The matrix is primarily used to calculate other prediction
measures but it is also used to visualize the performance of the model. For illustration purposes, a
confusion matrix generated from a decision tree predicting a binary response variable is of the form(

a b
c d

)
The rows of the matrix are the predicted classifications whereas the columns are the actual classifi-
cations. Therefore, a and d are the correctly predicted classifications and b and c are the incorrectly
predicted classifications. It is important to note that the confusion matrix is not restricted to binary
responses and a model that has n possible classifications will have a confusion matrix of size nxn
with its main diagonal being the correctly predicted classifications.

3
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2.4.2 Misclassification Risk

Misclassification risk is the primary statistic used to measure the predictive performance of a
decision tree model. It is the proportion of incorrectly classified response and can be calculated
from the confusion matrix as follows

MisclassificationRisk = 1− a+ d

n
=

b+ c

n

Where a and d are the correctly predicted classifications from the confusion matrix and n is the
size of the data. Like the confusion matrix, the misclassification risk is also not restricted to binary
responses.

2.4.3 Sensitivity and Specificity

Sensitivity and specificity, like the misclassification risk, measure the performance of a decision
tree model. Sensitivity is a measure of how accurately the model predicts the target classification,
that is the classification of interest. To find the sensitivity, calculate the proportion of correct
predictions for the target classification compared to the number of the target class in the data. For
the binary response variable case, this is calculated from

Sensitivity =
a

a+ c

Specificity refers to how accurately the model predicts the non-target classification(s). To find
specificity, calculate the proportion of correct predictions for the non-target classification(s) com-
pared to the overall number of non-target class(es) in the data. For the binary response case, this
is calculated from

Specificity =
d

b+ d

2.5 Model Evaluation

In general, a decision tree model is considered to have performed well if it shows little to no
signs of overfitting and predicts the classifications with a desired level of accuracy. To gauge how
overfit the decision tree model, analysts compare the results of the prediction measures discussed
previously from the training data set to the testing data set. That is, for each data set, the
prediction measures of misclassification risk, sensitivity, and specificity will be calculated. Then, if
there is a significant difference between any of the predictive measures, there is an increased chance
of overfitting. To gauge the accuracy of the predictions, look at the values of the misclassification
risk, sensitivity, and specificity. A well performing model will have a relatively low misclassification
risk and relatively high sensitivity and specificity in the context of the test data.
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3 CART Model

This section is based on material learned in the Applied Analytic Decision Trees course taught
at the University of Akron [Fri23]

3.1 Introduction

Classification and regression trees, CART for short, is a decision tree model developed by Leo
Breiman in which only binary splits are considered, that is, parent nodes can only be split into two
child nodes. Compared to other decision tree models, the reduced number of potential splits often
leads to a simpler model generally requires considerably less computational power to run.

3.2 Gini Impurity and Goodness of Split

Gini impurity is the measure of how impure a sample is where the purity of a sample is the
proportion of the majority class to the other classes. For example, if we had classes A, B, and C
with proportions 0.9, 0.03, and 0.02, the sample would have high purity as class A has the super
majority. Gini impurity is calculated as follows

Gini = 1−
k∑

i=1

p2i

where pi is the proportion of each classification in the sample.
Goodness of split is a method of measuring the change in Gini impurity from the parent node

to the child nodes. A split is chosen by considering all the possible binary splits and choosing the
split that maximizes the change in Gini impurity from parent to children. The goodness of split
measure is calculated as follows

GoS = ∆Gini = Giniparent −Ginichild1 −Ginichild2

3.3 Output

A typical CART algorithm will generate much the same output as other decision tree models
such as CHAID or logistic regression. For the purposes of the discussion in this paper, we will
only be focusing on the following output: a tree diagram, variable importance, confusion matrix,
misclassification risk, sensitivity, and specificity.

3.4 Benefits and Challenges

Due to the model only considering binary splits, CART models are often much simpler than
other decision tree models. The simplicity not only improves the interpretability of the model but
also reduces the computational cost. The reduced computational cost is especially important as,
when handling with a large set of training data for which the CART model will generate relatively
quickly saving both time and energy. The biggest limitation of the CART model is that it has a
high variance and low bias, meaning that the CART model is prone to overfitting.

In short, the CART models biggest strengths are sometimes its biggest weaknesses and mainly
comes from the fact that more complicated and less overfit models require large amounts of data
from a population which is often not practically feasible.
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4 Random Forest Model

This section is based on the paper ”Random Forests” by Leo Breiman [Bre01]

4.1 Introduction

The random forest model is an ensemble machine learning method proposed by Dr. Leo Breiman
in 2001 [Bre01] who, as discussed previously, also proposed the CART model. At its core, the
random forest method randomly generates a fixed number of CART trees and then aggregates the
classifications into a single prediction through voting. The method can be broken down into three
main steps.

1. Bagging

2. Tree Generation

3. Classification Voting

4.2 Bootstrapping and Bagging

Bootstrapping is a sampling procedure invented by Bradley Efron in which a sample is randomly
resampled with replacement. That is, if we have a sample from a population, we can treat the sample
as if it were a population and sample it. To illustrate this, let’s suppose that we have a random
sample from a population with data points,

x1, x2, ..., xn

If we were to bootstrap this sample, randomly chosen data points will be resampled and added to
the bootstrap sample resulting in a sample that may contain multiple of the same data point and
will be of the same size as the original sample. For example, if we have a dataset

x1, x2, x3, x4, x5

bootstrapping our hypothesised sample may result in the bootstrap sample

x1, x2, x3, x1, x5

Notice that the data point x4 was replaced with the data point x1 showing that the resampling was
done with replacement.

The benefit of bootstrapping is that it emulates repeated sampling from a population. This is
important as gathering more data from a population reduces the amount of variance in our sample,
making our estimators perform better and more accurately model the population of interest. When
possible, actually sampling from the population is preferable as bootstrapping operates under the
assumption that the sample is representative of the population. As such, when a sample is not
representative, the bootstrapping generates samples from a different population from the target
population, increasing bias. Nevertheless, bootstrapping is a powerful technique as sampling is
oftentimes expensive, time consuming, and inconvenient whereas bootstrapping is the opposite.
[Tra]
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4.3 Tree Generation Jarod Korn

Bagging is shorthand for bootstrap aggregation and is a procedure in which multiple bootstrap
samples are generated and then compiled into a single prediction by way of voting. In the random
forest model, the training dataset is bootstrapped a total of N times where N is the number of
CART trees that will be generated thus requiring N many bootstrap samples. It is important to
note that each bootstrap sample is independent of all other bootstrap samples, thus leading to
reduced correlation between CART trees. Furthermore, the reduced correlation helps to reduce
the risk of overfitting the model to the training dataset as there is no single training dataset but
multiple generated from the same theoretical population.

4.3 Tree Generation

4.3.1 Random Features

For each bootstrap sample generated, a variation of the CART algorithm will be used to build a
tree. This variation of CART is the same as discussed previously with the exception that predictors
will be randomly chosen at each node. Doing so decreases the correlation between trees in the forest
and makes the final model more robust to outliers and noise in the population.

4.3.2 Out-of-Bag (OOB)

In order to measure the performance of the model on the training dataset, roughly a third
of each bootstrap sample will be set aside and used as a testing dataset for the current forest.
This testing dataset is referred to as the out of bag sample (OOB). OOB is required because if
the random forest model were run on the whole training dataset, the model would near perfectly
predict the classifications. This is due to the implicit assumption made in bagging that the sample
is representative and can thus be treated like the target population. Since the model is estimating
the population, that is the training sample, with little variance and bias, the error estimates will
be near zero.

4.4 Classification Voting

After the CART models are generated, the trees will be aggregated into a single predictive model.
It is important to note that this aggregated model is not a decision tree but rather parts of N many
trees and thus has no visual representation unlike the CART models it is based on. Nevertheless,
trees are aggregated by a voting process. The details of the voting process differ depending on
whether the method is regression or classification, but since the focus of this particular project
is on classification, the details for the regression voting will be omitted. For classification voting,
the random forest model uses the method of plurality voting. For example, if we generate N
tree classifiers with N many predicted classifications for a single test data point xi, the aggregate
classification of xi will be the class predicted most often from the N many generated trees.

4.5 Output

The generated output of the random forest algorithm is identical to CART output with the
exception of tree diagrams and the inclusion of a classification plot. Like the CART algorithm,
the random forest will generate a confusion matrix along with a list of predictors in terms of
importance to the model. The difference between the confusion matrix of CART and random forest
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is that the matrix for the random forest is generated from the last OOB sample rather than the
training dataset. Unlike CART, no tree diagram will be produced as drawing each tree would
not only be impractical but also computationally expensive. Moreover, visualizing a handful of
trees is not beneficial as each tree is uncorrelated, meaning that behavior exhibited in a single tree
is not indicative of the behavior of the population. The random forest model will also produce
an additional plot referred to as the classification plot. The classification plot will plot the OOB
estimate along with the estimate for each class over the number of currently generated trees. The
plot is useful for determining the convergence and rate of convergence of the estimates.

4.6 Benefits and Challenges

The primary benefit of the random forest model is that, due to the randomness injected from
the bagging, random feature selection, and law of large numbers, they do not overfit [Bre01]. As a
result, random forests predict classifications accurately with very little bias and low variance.

The primary challenge of the random forest model is that, due to the lack of a tree diagram,
interpretation ability is severely diminished. Although variable importance measures indicate which
features are most important for prediction, random forests can not detail how they are important.
That is, without a tree diagram, an understanding of how the predictors interact with the response
is not available. Another key challenge is the computational cost of the model. In order for the error
estimates to converge and the risk of overfitting to be reduced, the random forest algorithm needs to
generate a large enough forest. This requirement is problematic when computational power is not
readily available as the cost of computing scales with the size of the dataset, number of predictors,
and number of desired trees in the forest.

5 Implementation of Models

5.1 R Programming Language

For the implementation of the CART and random forest models, we have chosen to use the
programming language R, an open source statistical programming language. The primary motiva-
tion for using R is that it is open source and highly versatile making it the go to choice for many
statistical fields. However, the base language R does not support either the CART model nor the
random forest model and so we will be using specialized packages. The the list of packages used is;
randomforest, rpart, rpart.plot, and caTools.

5.2 Data

In order to give a full demonstration of the models, an example data set must be used. For
this project, we will be trying to predict the outcome of a chess match. The original dataset [J]
was obtained through Kaggle, a free online database hosting website, and has a variety of variables
including both players names, ELO ratings for both players, number of turns the game lasted, a
full list of moves played, game outcome, and more. Since most of these variables are not useful as
predictors, most were omitted and some variables were combined into a single predictor. Identifying
information such as player names, date, and game ID were omitted and the players ratings were
combined into a single predictor by subtracting blacks rating from whites. Moreover, since the
model will only be predicting games that ended in either a black or white win, draws will be

8
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omitted. After cleaning up the data set to fit our needs, our final data set contains 19108 games
played with 8 variables:

• opening ply (how many moves the opening lasted)

• first move

• number of turns

• max time for both players

• difference in rating between players

• indicator of whether or not the game was rated

• how the game ended

• winner of the game

5.3 Initialization

After loading the cleaned data into R, the next step is to initialize everything that we will need
before we run each model. We start off by fixing our seed for the random number generation so
that we get the same results each time we run the model (We used a seed of 100). Then, we want
to split the data into our training and testing data sets as described previously. Since we have a
large amount of data, we are not too concerned with the split being too skewed so we will go with
a 70:30 split. The last step is to name our response variable which, as discussed previously, will be
the winner of the match. Now that we have set our seed, split the data, and named the response
variable, we can run each model.

5.3.1 CART Model

To run the CART model in R, model building parameters must be passed to the function. For
this analysis, the model was passed the response variable and all predictors, was told to use the
Gini Impurity splitting criteria, and was told to only split if the goodness of split is greater than
0.05.

5.3.2 Random Forest Model

Like the CART model, building parameters need to be passed to the random forest function. For
this analysis, the model was passed the response variable and all predictors, was told to generate
500 trees, and was told to asses the importance of each predictor.

9
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6 Results

6.1 CART Output

Figure 1: CART Tree Model

From figure 1, we can see that the CART model returned a single level tree with the split difference
in ELO rating less than -42. Node #2 classifies the game as a black win, is 68% pure, and contains
37% of the total training set. Node #3 classifies the game as a white win, is 64% pure, and contains
63% of the total training set. As can be seen, the model is only single level and quite simple, giving
information only on the interaction between the difference in rating and the response. From the
root node, we can see that white wins 52% of games, meaning that white seems to have a slight
advantage over black. This is likely due to the fact that white always makes the first move in a
chess game, giving them a distinct advantage over black.

From figure 2, we can see that the list of predictors from most to least important is: difference in
rating, the first move played, the max time for both players, the number of turns the game lasted,
and the number of turns the opening lasted for. Furthermore, the difference in rating is by far
the most important predictor with the next most important being significantly less so (558.25 vs
10.58).

10
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Figure 2: CART Variable Importance

Figure 3: CART Confusion Matrices and Prediction Measures

From figure 3 we can see that our misclassification risks for the training and testing data sets are
34.65% and 34.80%. These two values are very close showing no indication of overfitting. The values
themselves, while somewhat high, are reasonable for the data and are a significant improvement from
the 48% risk we would have had if there were no predictive model. Moreover, the sensitivity and
specificity are similar between the sets (77.40% vs 76.93%)(52.13% vs 52.31%) further indicating
that overfitting is not an issue. From the values, the sensitivity is significantly higher than the
specificity, showing that the model is better at predicting white wins than black. This is likely due
to the fact that we are classifying the majority of the data as a white win (63%) and white wins
the majority of games by default (52%) due to the advantage of having the first move.

11
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6.2 Random Forest Output

Figure 4: Classification Error Plot

Figure 4 shows the classification error plot for the generated random forest model. As can be seen
in the plot, as the number of trees grows, the errors estimates converge, as required. Looking at the
plot, the errors appear to stabilize around the 100 tree mark indicating that we may have generated
more trees (500) than required. However, as the error estimates tend to overestimate the actual
error and thus going past the convergence point is necessary [Bre01]. Nonetheless, the plot indicates
that the number of trees generated was more than necessary and can be reduced ,with caution, if
desired.
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Figure 5: Random Forest Variable Importance

Figure 6: Random Forest Variable Importance Plot

Figures 5 and 6 both show the variable importance for the model. Figure 5 shows the values
for the importance and figure 6 is a visualization of figure 5. Since the CART model only relied
on Gini impurity, we will only be discussing the Gini importance. From these figures we can see
that the three most important variables for the model are: difference in player rating, number of
turns the game lasted, number of turns the opening lasted for. Moreover, from figure 5 we can see
that the number of turns the opening lasted for and the first move played were significantly more
important for white than for black. This is further evidence to suggest that white having the first
move is important as both opening.ply and first.move relate to the start of the game where white
has the temporal advantage.

13



6.2 Random Forest Output Jarod Korn

Figure 7: Necessity of OOB Demonstration

Figure 7 is a demonstration of the concept discussed previously in section 4.3.2 that the random
forest model will near perfectly predict the training dataset. From the figure, we can see that the
misclassification risk is nearly zero and that both the sensitivity and specificity are nearly one. All
three measures indicate that the model is almost perfectly predicting the training set, illustrating
the need for the OOB samples.

Figure 8: Random Forest Confusion Matrices and Prediction Measures

From figure 8, we can see that the misclassification risks, sensitivity, and specificity for the final
OOB and testing sets are nearly identical (31.11% vs 30.93%)(69.62% vs 69.83%)(68.03% vs 68.18%)
indicating that there are no problems with overfitting. Looking at the values of the estimates, the
misclassification risk is relatively small and the sensitivity/specificity are relatively high (30.93%,
69.83%, 68.18%). Moreover, there is not a significant difference between the sensitivity and the
specificity (69.83% vs 68.18%) indicating that the model is predicting both classes equally.
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6.3 Comparison of Output

Figure 9: Comparison of Predictions

Figure 9 compares the predictions of the CART and random forest models by combining figures
3 and 8. From the comparison, we can see that the random forest model yielded better predictions
than the CART model. Looking at the misclassification risks, the CART model had a somewhat
higher risk than the random forest model (34.79% vs 30.93%) showing that the random forest
predicted wins more accurately. Although the difference in accuracy is somewhat small (roughly
4% improvement), in the context of a chess game the difference is significant. Being able to predict
games with even just 4% more accuracy leads to many more games being correctly predicted in the
extremely large target population (over 10120 possible chess games).

The specificity of CART was lower than the random forest (52.32% vs 68.18%) whereas the
sensitivity of CART was higher than the random forest (76.93% vs 69.83%). Therefore, the CART
model is better at predicting wins for white whereas the random forest model is evenly split between
white and black.

15
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7 Conclusion

Through both theory and practice, we have seen that the random forest model is a powerful
predictive tool for classifications which offers many improvements over similar predictive models
with a few critical limitations. The key improvement of the random forest model is the reduced
risk of overfitting. Due to the injection of randomness from bagging and random feature selection,
the model will not rely on any one training set, reducing the risk the overfitting by decreasing the
variability of the predictions. As such, random forests tend to yield more accurate predictions when
compared to other tree models. However, random forests come with two major limitations, compu-
tational cost and reduced interpretation ability. Because random forests require large sets of data
with many generate trees, the algorithm can be very computationally expensive. This is a major
restriction as the cost scales with the size of the dataset and number of desired trees, parameters
which should be maximized whenever possible for better predictions. For example, in the process
of running the random forest model with 500 trees on the chess game dataset of 19108 observations,
the algorithm took over 30 seconds to run and required over a gigabyte of RAM. When testing the
algorithm for a larger number of trees (2000) these requirements increased to multiple minutes of
computation and over four gigabytes of available RAM. Additionally, the reduced interpretation
ability is a major limitation as analysts often want to understand the behavior of data. While
the random forest model provides information about the importance of predictors, the nature of
how the predictors interact with the response is not attainable. In contexts where detecting these
interactions are vital, the random forest model significantly under performs compared to simpler,
non-ensemble methods. In the context of the chess game analysis, this limitation as not as notice-
able due to the simplicity of the generated CART model. Even so, there was a notable distinction in
the interpretability of the CART model versus the random forest model. Should the CART model
have been more complex, this discrepancy would have been much more apparent.

8 Appendix

8.1 R Code

rm(list = ls())

graphics.off()

# -------------------------------------------------------------------

# Loading packages

library(caTools)

library(randomForest)

library(rpart)

library(rpart.plot)

# Load Data

D = read.csv("lichessgames.csv")

nrow(D)
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# set seed

set.seed(100)

# Splitting data in train and test data

split <- sample.split(D, SplitRatio = 0.7)

train <- subset(D, split == "TRUE")

nrow(train)

test <- subset(D, split == "FALSE")

nrow(test)

# Responce variables

trainY = as.factor(train$winner)

testY = as.factor(test$winner)

# -------------------------------------------------------------------

# CART Method

# -------------------------------------------------------------------

# Fit CART

fit.tree = rpart(winner ~ ., data=train,

method = "class",

parms = list(split = "gini"),

cp = 0.05)

fit.tree

# Plot CART tree

rpart.plot(fit.tree)

# Variable Importance

importanceCART = sort(fit.tree$variable.importance,decreasing=TRUE)

importanceCART

# Predict Training Data

pred.tree = predict(fit.tree, train, type = "class")

confusion_mtx = table(pred.tree,trainY)

missclass_risk = (sum(confusion_mtx)-sum(diag(confusion_mtx)))/sum(confusion_mtx)

sensitivity = confusion_mtx[2,2]/sum(confusion_mtx[,2])

specificity = confusion_mtx[1,1]/sum(confusion_mtx[,1])

conf1train = confusion_mtx

pred1train = c(missclass_risk, sensitivity, specificity)

# Predict Testing Data

pred.tree = predict(fit.tree, test, type = "class")
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confusion_mtx = table(pred.tree,testY)

missclass_risk = (sum(confusion_mtx)-sum(diag(confusion_mtx)))/sum(confusion_mtx)

sensitivity = confusion_mtx[2,2]/sum(confusion_mtx[,2])

specificity = confusion_mtx[1,1]/sum(confusion_mtx[,1])

conf1test = confusion_mtx

pred1test = c(missclass_risk, sensitivity, specificity)

# Compare Training and Testing

conf1train

conf1test

pred1train

pred1test

# -------------------------------------------------------------------

# Random Forest Method

# -------------------------------------------------------------------

# Fitting Random Forest to the train dataset

classifier_RF = randomForest(x = train[-8],

y = trainY,

ntree = 500,

importance = TRUE)

classifier_RF

# Plotting model

plot(classifier_RF)

legend("topright", colnames(classifier_RF$err.rate),col=1:4,cex=0.8,fill=1:4)

# Importance plot

importance(classifier_RF)

# Variable importance plot

varImpPlot(classifier_RF)

# Training data set almost perfectly predicts training data set

# Predicting the Train set results

y_pred = predict(classifier_RF, newdata = train[-8])

# Confusion Matrix

confusion_mtx = table(train[, 8], y_pred)

missclass_risk = (sum(confusion_mtx)-sum(diag(confusion_mtx)))/sum(confusion_mtx)

sensitivity = confusion_mtx[2,2]/sum(confusion_mtx[,2])

specificity = confusion_mtx[1,1]/sum(confusion_mtx[,1])
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confusion_mtx

c(missclass_risk, sensitivity, specificity)

# Predict "Training" Data

confusion_mtx = classifier_RF$confusion[,-3]

missclass_risk = (sum(confusion_mtx)-sum(diag(confusion_mtx)))/sum(confusion_mtx)

sensitivity = confusion_mtx[2,2]/sum(confusion_mtx[,2])

specificity = confusion_mtx[1,1]/sum(confusion_mtx[,1])

conf2train = confusion_mtx

pred2train = c(missclass_risk, sensitivity, specificity)

# Predict Testing Data

y_pred = predict(classifier_RF, newdata = test[-8])

confusion_mtx = table(test[, 8], y_pred)

missclass_risk = (sum(confusion_mtx)-sum(diag(confusion_mtx)))/sum(confusion_mtx)

sensitivity = confusion_mtx[2,2]/sum(confusion_mtx[,2])

specificity = confusion_mtx[1,1]/sum(confusion_mtx[,1])

conf2test = confusion_mtx

pred2test = c(missclass_risk, sensitivity, specificity)

conf2train

conf2test

pred2train

pred2test

# -------------------------------------------------------------------

# Compare CART and Forest

conf1test

conf2test

pred1test

pred2test
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