
The University of Akron The University of Akron 

IdeaExchange@UAkron IdeaExchange@UAkron 

Williams Honors College, Honors Research 
Projects 

The Dr. Gary B. and Pamela S. Williams Honors 
College 

Spring 2023 

Discord API Wrapper Discord API Wrapper 

Joshua Brown 
jgb38@uakron.edu 

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects 

 Part of the Other Computer Sciences Commons 

Please take a moment to share how this work helps you through this survey. Your feedback will 

be important as we plan further development of our repository. 

Recommended Citation Recommended Citation 
Brown, Joshua, "Discord API Wrapper" (2023). Williams Honors College, Honors Research Projects. 
1675. 
https://ideaexchange.uakron.edu/honors_research_projects/1675 

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela 
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University 
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College, 
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more 
information, please contact mjon@uakron.edu, uapress@uakron.edu. 

https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1675&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1675
https://ideaexchange.uakron.edu/honors_research_projects/1675?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1675&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu


Discordwrap, a Python Library

By

Joshua Brown

Honors Project

Department of Computer Science

Spring 2023

Edited by

Matthew Dray



Table of Contents

Abstract 3
Preface 3
Part 1. Use Cases 4
Part 2. Design 5

2.1 Rate Limiting 5
2.2 Async vs Sync 6
2.3 Authentication 6
2.4 Errors 7
2.4 Methods 7
2.5 Testing 7
2.6 Black 8
2.7 Just 9
2.8 Continuous Improvement and Continuous Development 9
2.9 Implementation 11
2.10 Challenges 12

Part 3. Public Docs 14
3.1 Design 14
3.2 CICD 14

Part 4. Reflection 15
4.1 Mistakes 15
4.2 What Was Learned 16
4.3 Future Work 16

Part 5. Links to Resources 16
5.1 Discordwrap 17
5.2 Brunus Labs 17
5.3 Conventional commits 17
5.4 Pytest 17
5.5 Poetry 18
5.6 Just 18
5.7 Black 18
5.8 Nextcord & Discord.py 18
5.9 Nextra 19
5.10 Vercel 19
5.11 Discord 19



Abstract

Discordwrap is a Python library that abstracts the Discord API so that developers can

easily integrate their existing projects with Discord. This paper outlines Discordwrap's creation,

from start to finish, including implementation as well as key design decisions, such as the

decision to provide a functional library interface rather than an object-oriented one. There are

several reasons for this decision, the most pertinent being the stateless nature of a functional

library removes the need to pass around a class object like a “client”. On top of that, many

object-oriented and bot-based Python libraries for Discord already exist, none of whose goal is to

provide a simple, yet effective functional API wrapper in a synchronous manner, such as that of

Discordwrap. The goal of this paper is to both outline and document the key design decisions

and implementation details of the library through a retrospective lens.

Preface

Discord as an application creates an amazing ecosystem designed to bring individuals

together to form communities, share experiences, play games together, host study sessions, and

communicate through virtual means. This amazing ecosystem is possible due to the

developer-empowering API Discord has made public which encourages developers to create bots

and integrate other services into the ecosystem.

Throughout my research project, the developer community has re-establish a solid variety

of well-maintained Python libraries including nextcord, Discord.py, interactions-py, etc. These

libraries all share a common goal of wrapping Discord bot interactions for bot developers,

meaning they focus on a single bot instance and how it handles various user and Discord



interactions. This is what sparked the motivation for Discardwrap: create a class-less, rate-limit

aware, simple API wrapper for Discord. Even in its simplest form, Discordwrap has proven

useful and is already integrated into multiple projects under development by Brunus Labs1.

Part 1. Use Cases

The most immediate use case for Discordwrap is for sending notifications to Discord

without the need for a bot or webhooks. For example, in one of Brunus Labs’s projects, a client

wanted Discord notifications when a given event was triggered on their website. This could be

solved by webhooks, however, webhooks have a much less forgiving rate limit policy than bot

messages, and each webhook must be explicitly set up. Messages from bots on the other hand

have more freedom and have a much higher rate limit threshold. This is where Discordwrap

comes into play, by handling the rate limiting, and message sending to the Discord API from the

website's flask2 backend, and not from a user. This also saves the project from needing a separate

application just for the bot.

Another client of Brunus Labs needed internet data to be aggregated and sent to their

Discord server, with the messages being controlled by multiple cron jobs. This is another

example of where a Discord bot fails to solve the problem, as the messages are being initiated by

Python scripts, and run till completion. Discordwrap can elegantly handle this situation,

requiring one line of code for setting up the token, and one line of code for sending the actual

message.

2 Flask is a backend framework for python, used to create APIs or full web apps.

1 Brunus Labs is a company founded by the author, Josh Brown. Josh started the company in September 2022 in his
last year of college, taking on freelance-like contracts under the name of an official LLC.



Part 2. Design

At its core, Discordwrap is meant to be an extremely lightweight library with minimal

overhead. It has zero dependencies and only abstracts what it needs for the end user. There are no

classes for messages, users, channels, etc, and the goal is to provide no additional documentation

overhead to what Discord provides. In keeping with this philosophy, Discordwrap’s methods

directly return the JSON data from the Discord API.

2.1 Rate Limiting

Discordwrap’s main functionality is taking care of the complex rate limiting that Discord

strictly enforces. In the eyes of rate limiting, Discord treats sections of its API as buckets,

wherein each bucket has an independent rate limit. The problem lies in making sure that the

library blocks lazily, and not prematurely. For example, if the rate limit for a given bucket is five

messages, and the user initiates a sixth message to Discord, it should only block the user's

program on the sixth message, and not on the fifth message when the rate limit was initially hit.

This ensures that the user’s program remains as fast as possible since the library only blocks

when it’s sure that there is a message that needs to be sent but must wait for its rate limit bucket

to expire.

Internally, this is solved using a combination of multithreading and mutexes with the

asyncio library (which is included with Python, and therefore not an external dependency). When

the user requests an API call to Discord, the library creates a singleton that holds a thread to

handle mutex blocking and callbacks. This singleton, by definition of the pattern, is only ever

created once, and other calls to instantiate it will just return the current singleton. Once the



singleton is created, the next step is to grab the mutex for the given bucket, along with a global

mutex, in case there is a rate limit for the Discord API as a whole. Once both mutexes are

acquired, Discordwrap proceeds by locking a new mutex for the given bucket. Then, the API is

called on the given route, checks if a global, or local rate limit has been reached, and returns the

JSON to the caller. If either rate limit is hit, then it fails to unlock the mutex after the function

returns and initiates a callback that unlocks the mutex after the duration of the rate limit, wherein

the lock will be released on the singleton.

2.2 Async vs Sync

The second challenge this library presents is not adding the mental overhead of

asynchronous code in synchronous scripts. To solve this, Discordwrap uses two function

decorators. The base function itself is synchronous, since the requests library also included in

Python is synchronous. The first decorator takes this function and wraps it inside an

asynchronous function that takes care of rate limiting. This is done so that our rate-limiting logic

can be reproduced regardless of the type of request sent to Discord (POST vs GET vs PUT, etc).

Lastly, this is wrapped again in a function that takes the asynchronous function and runs it inside

the singleton’s main thread until it completes and then returns the result, therefore making the

function synchronous again.

2.3 Authentication

To authenticate requests to Discord, the user's bearer token needs provided, which is

given to them by Discord itself. This is essentially the user’s API key. Rather than instantiating a



class like most libraries do, the easiest way for this library is to use a static class variable, aptly

named Auth, and assign it the token, persisting it for the duration of the running program.

2.4 Errors

Most errors that can be thrown from Discord are also implemented in this library. Errors

are thrown based on responses from Discord or can be caught before a request is generated,

depending on the required syntax of the different library methods. For instance, in order to send a

message via the create_message function, a user must supply one of content, embeds,

sticker_ids, or components as a key in the JSON body. If they fail to do so, the library will throw

an InvalidBody error before the request is ever attempted.

2.4 Methods

Once the core logic for rate limiting was implemented, writing out actual Discord

methods became straightforward. The input parameters lined up with the required fields for the

API URL, such as channel id or guild id3 along with the JSON body needed for the request. The

request then returns the JSON response from Discord or the status of the response if no request

body is returned.

2.5 Testing

Any good library needs testing. For Discordwrap, the testing library was chosen to be

pytest, for its robustness and simplicity. Tests are written in the tests folder of the project, and are

organized into files that are prefixed with “test_”. Since libraries are often worked on and

3 Guilds in Discord are what most people refer to as servers. In the Discord API however, they are explicitly referred
to as Guilds.



improved, tests must cover as much as they can to ensure nothing breaks as the developer

changes source code. Since this library is wrapping an API, requests to the Discord API

shouldn’t be made every time tests are run. To solve this, we take advantage of monkey patching,

a method whereby the API caller function is swapped with a mock function written inside the

library that returns fake JSON from a previous response. In other words, once a new function is

written, a developer can call it on the Discord API, and save the response in a JSON file that can

then be injected into the caller functions used by tests.

Of course, this process is automated. Contributors and developers can use the

get_payload.py script that prompts the user for the endpoint they want to call, along with the type

of request and method name, and automatically save the file in the proper location with the

desired JSON data, including proper formatting.

2.6 Black

When writing code, it is important to decide and implement a formatting standard for the

code itself. For Discordwrap, black was chosen as the code formatter, as it is extremely popular

in the Python community. When integrated properly with a developer's IDE, black will

automatically format code when a file is saved so that the developer does not need to spend time

fixing formatting errors manually. Black implements various rules such as 2 spaces between

functions, no parentheses on “if” statements, max line width, and so on. This ensures that the

code follows a consistent style no matter what developer is working on the project, and keeps the

code clean.



2.7 Just

Any project is not complete without good automation or tooling. ‘Just’ is one of the best

ways to simplify a developer’s tooling on the CLI, where many developers do most of their

day-to-day tasks. ‘Just’ is essentially a Makefile but for CLI commands. Recipes can be created

that will call CLI commands in order. Recipes can depend on others, have variables, and have

other useful features. Without ‘Just,’ running tests would require the developer to build and

install the library, followed by running black and pytest. These 4 commands all have unique and

different syntaxes. ‘Just’ simplifies these by combining them in the justfile to ‘just test’. Testing

is not the only thing ‘Just’ is used for. In fact, all CLI commands that are used more than once

specifically for the project are added to the justfile.

2.8 Continuous Improvement and Continuous Development

The last piece of this project is CICD. Projects that have the potential to be developed by

more than one person, such as open source projects, need good CICD to ensure that all of the

best practices are being followed, and to increase developer productivity.

To understand Discordwrap’s CICD pipeline it’s important to first discuss how changes

are introduced via git. First, an issue is made on Github, describing what new features need to be

made or bugs need to be fixed. Then, a developer creates a branch following the pattern

“[feat|fix]/[issue number]-[short-description]”. From here, they work on their branch, complete

the necessary changes, and then create a pull request into the main branch. This is when all of

our CD pipelines run. Once the PR is complete, our releaser runs, continuously updating the

library after every change. This lets developers update Discordwrap very quickly. In one

instance, a hotfix for a bug was able to be released to PyPi in under 5 minutes after being found.



Discordwrap uses an impressive level of CICD, broken into multiple sections. The first

section is meta linting, followed by code testing, and lastly, code releasing. All workflows can be

found in the .github folder of the project, using GitHub actions as our CICD runners.

Meta linting is the process of linting commit messages, PR titles, and branch names for

pull requests into the main branch. This ensures that all developers are following a strict standard

for commit history and pull request formations. These are specifically important for the releaser

workflow. This is triggered on every pull request, regardless of what branch is being merged

into.

Next, also run on every PR, is code testing. This involves running the pytest functions,

along with black, making sure that the code is working properly and formatted correctly. If any

of these tests fail, the requesting developer must fix the issues in further commits until all tests

pass.

The last workflow, and by far the most impressive, is the releaser. Discordwrap uses a

commit standard known as Conventional Commits, where each commit follows a strict format

that includes the type of change, a short description, and an optional location. Since all of the

repository’s commits strictly follow this standard, it’s possible to automatically generate

changelogs based on the commits in a given PR. It can also automatically bump the version

number of the project based on semantic versioning, where each number in the version of a

project denotes a specific type of change in the project's code. When the workflow runs, it

appends the new changes from the merged PR into the running changelog, bumps the version

number, and then automatically uploads and updates the library code and version to the PyPI

repository. In other words, the deployment process is 100% automated, with no developer input

needed, other than the signoff and merging of a pull request.



There are also two other pieces of CICD, although they are much more minor. First is the

simple pull request template, which gives developers a soft template for pull requests into the

library. Second is the dependabot workflow. This is a bot that runs once every day and checks the

versions of GitHub workflow libraries and ensures they are always up to date.

2.9 Implementation

The technical development environment for Discordwrap falls into two categories. First,

is the development environment, where maintainers and contributors may add features or fix

bugs within the library. The second is the end-user environment, where users implement

Discordwrap into their projects.

To make this as streamlined as possible, Poetry was used to ensure every developer's

environment was the same when working on the library. Poetry describes itself as an easy Python

dependency management tool, where it can take care of not only building the library, publishing

to PyPi, and installing developer dependencies all via one simple file, with a few simple

commands. Development was primarily done on Linux, however, Poetry is OS agnostic and

Discordwrap therefore can be worked on with any operating system once installed.

The second category is that of library implementation. To use the library, the user must

first set their API token, given to them by Discord. Once the token is set, the user can use any

method that is implemented in Discordwrap in the codebase. As shown in the figure, the library

gives the user full control over how they want to send the request with direct access to the JSON

sent to the API. The result from this method will also be the JOSN result from the API itself. The

user, therefore, does not need to depend on nor learn documentation specifically for

Discordwrap, but only needs to rely on the Discord Developer documentation.



2.10 Challenges

Creating a Python library is not an easy task. Learning how to properly structure the

project, learning how imports worked, and how packages are built was very challenging. The

best advice here to recommend to others for overcoming similar challenges is to go to the

documentation first and pair that with examples that can be found in the real world. For

Discordwrap, that looked like comparing and examining other open-source libraries, along with

reading the documentation for creating libraries directly from Python’s documentation.

The second challenge that was encountered was properly setting up our CICD pipelines.

There is a lot of infrastructure in this simple library, as mentioned previously. The most

challenging of those was the continuous release. To automatically release the library on a

successful PR, Discordwrap’s pipelines must not only determine the new version number

automatically from the commits within the new PR but also make a commit in the pipeline itself,

bumping the version number everywhere it needs to be bumped. To make it clear, Discordwrap’s



CICD automatically commits code changes triggered by pull requests. This was a great

accomplishment once it started working, as this is the main step that lets the library automatically

release to PyPi, the Python package repository.

With the framework of the library laid out, and CICD set up for easy releases, the next

challenge was to create a proper testing framework for the library. As mentioned, pytest was the

chosen testing framework, as its performance in prior projects proved acceptable for this one.

The trick was not in the testing framework itself, but in making tests that were able to mock

Discord requests so that tests could be run without actually hitting Discord’s API. The solution

here was one that was learned about before, and even used, but not to this extent or capacity.

Monkey Patching the requests library and mocking the API requests from the JSON file for the

given endpoint that had already been generated was a great feat and made testing from then on a

breeze. New tests now only need to be run one time on the actual API and thereafter could be

faked from then on.

Now, what remained was the core library. Here lies the greatest challenge of the project

and the core of this research paper; Writing a functional Python library for Discord. As

mentioned before, this was indeed solved and proven possible, thanks to a singleton that holds a

reference to the current thread dedicated to the Discordwrap library, with some mutex logic

stopping requests from being sent once the library exceeded its rate limit, though only for a given

bucket.

When first building the rate portion of the library, the mutexes simply did not work

properly, either refusing to unlock or not running synchronously after completion. After a few

weeks of research and digging into StackOverflow questions along with the asyncio library

documentation, the solution finally became clear. The Singleton, on the first request, starts a



thread dedicated to the Discordwrap library, that the mutexes live on. When a rate limit is hit, a

mutex release is thrown on a callback on the thread inside the singleton, so that it can return to

the user's main program as fast as possible after sending a request. The async problem was

solved by wrapping the async functions in decorators that run the async function to completion,

making it artificially synchronous.

Part 3. Public Docs

3.1 Design

The documentation (docs) are provided using a simple static site built with Nextra.

Nextra makes developing documentation as simple as adding markdown-x or markdown files to

a git repository. This means that developing code blocks and formatting text is very simple.

Pages are automatically created and linked together, along with links to the project GitHub.

The site is broken up into a few pages. Firstly, the Introduction page, lays out the reasons

behind Discordwrap’s existence, its use cases, and its features. Next is the Quickstart page,

which has instructions for getting started with the library. An about page can be found on the top

navigation that details some background about the project. Finally, the API Reference page

outlines each method in the library.

3.2 CICD

The CICD for the documentation site is equally as impressive as the CICD for the library

itself. This is thanks to Vercel’s advanced infrastructure. When the main branch is updated,

Vercel will instantly download, build, and redeploy the code to production. This entire process



generally happens in under 1-minute after a push. If a build fails, Vercel will roll back to the last

successful deployment to keep the site alive. All of this is within Vercel’s free tier, with the only

cost being the domain name of the site.

Part 4. Reflection

Building a library is hard. There are a lot of moving pieces and very tough designs that go

into laying the foundation for a good library, regardless of purpose. It was also difficult to

determine what the project needs or should need before the first line of code is written.

Originally, Discordwrap was to have a site, documentation, and more. These quickly got pushed

to the side as work was focused on developing state-of-the-art CICD, developer tooling, testing,

and the library itself.

4.1 Mistakes

Getting the core rate limiting correct was a pain. Python’s handling of async threads is

subpar, at best. Thankfully, nextcord’s implementation which was forked from Discord.py, had

the foundations of rate limiting that provided a reference for this library, translating it to a more

functional approach.

That's what programming is though. Mistakes will be made, sometimes over and over,

until the right solution is found. Mistakes are only mistakes until fixed and learned from.



4.2 What Was Learned

Dealing with asynchronous code, and getting a solid grasp on multithreading in Python

are easily the greatest and most important topics learned during this project. Also, the importance

and weight a good foundation plays in building a library. This is not the first library I have

developed, however, it is the first one I am happy with. It not only works but works well and can

be used in production code.

Another interesting topic I was able to dive into was learning Poetry, and how it handles

library development. I feel much more confident in designing and working with library

fundamentals and virtual environments thanks to poetry.

4.3 Future Work

Discordwrap still needs a lot of love. The most immediate tasks are making a homepage,

explaining its purpose and how to get started, along with implementing more Discord endpoints.

More advertising also needs to be done within the Discord developer community so that people

might start using the library in the wild. There are also some client projects that can immediately

benefit from this library that should be bumped in priority..

Part 5. Links to Resources

This project used a multitude of tools, libraries, and standards from various sources that

have been named multiple times above. This list details what was used, along with links to each

project.



5.1 Discordwrap

Discordwrap can be found at the Brunus Labs Github at

https://github.com/Brunus-Labs/Discordwrap and can also be installed via pip with “pip install

Discordwrap”. The package can also be seen at https://pypi.org/project/discordwrap/. The public

docs are hosted at https://discordwrap.brunuslabs.com.

5.2 Brunus Labs

Brunus Labs is still, as of writing, very early in the startup stage. We are currently

focusing on our current clients, and our main website is still under development. Feel free to

check it out periodically for updates. You can find us at https://brunuslabs.com/ and on our

GitHub at https://github.com/Brunus-Labs.

5.3 Conventional commits

Conventional commits is a popular standard for commit messages so they can be used in

automatically generated change logs and version bumping. More information can be found at

https://www.conventionalcommits.org/en/v1.0.0/.

5.4 Pytest

Pytest is the testing library for Discordwrap. More information can be found at

https://docs.pytest.org/en/7.2.x/, and it can be installed with “pip install pytest”.

https://github.com/Brunus-Labs/discordwrap
https://pypi.org/project/discordwrap/
https://discordwrap.brunuslabs.com
https://brunuslabs.com/
https://github.com/Brunus-Labs
https://www.conventionalcommits.org/en/v1.0.0/
https://docs.pytest.org/en/7.2.x/


5.5 Poetry

Poetry is the backbone of the library structure, helping with developer dependency

management, and library building. Their homepage can be found at https://python-poetry.org/.

5.6 Just

Just is an extremely powerful CLI runner that has seen usage in a multitude of personal

and professional projects, no matter the size, and deserves more attention and use. Their main

page can be found at https://just.systems/ where you can also find their GitHub and manual

pages.

5.7 Black

Blacks is the name of the formatter. Black specifically advertises itself as a

non-configurable formatter, where anyone using black is bound by the same rules and format.

Their homepage can be found at https://black.readthedocs.io/en/stable/.

5.8 Nextcord & Discord.py

Nextcord and Discord.py helped greatly in not only inspiration but also the rate-limiting

part of the library. Their docs can be found at https://docs.nextcord.dev/en/stable/ and

https://Discordpy.readthedocs.io/en/stable/ respectively.

https://python-poetry.org/
https://just.systems/
https://black.readthedocs.io/en/stable/
https://docs.nextcord.dev/en/stable/
https://discordpy.readthedocs.io/en/stable/


5.9 Nextra

Nextra is a static documentation / blog template built with nextjs by vercell. Nextra can

be found at https://nextra.site/

5.10 Vercel

Vercel is the host for the Discordwrap docs, which also took care of the CICD for the site.

Vercel can be found at https://vercel.com

5.11 Discord

The Discord docs for developers are a great way to get started with working with APIs

and are what sparked the interest in the space. Their API docs can be found at

https://Discord.com/developers/docs/intro and Discord’s homepage can be found at

https://Discord.com/

https://nextra.site/
https://vercel.com
https://discord.com/developers/docs/intro
https://discord.com/

	Discord API Wrapper
	Recommended Citation

	Discordwrap Honors Research Project

