
The University of Akron The University of Akron

IdeaExchange@UAkron IdeaExchange@UAkron

Williams Honors College, Honors Research
Projects

The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2022

Resume Parser and Job Search Resume Parser and Job Search

Stephan Gunawardana
srg97@uakron.edu

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

 Part of the Databases and Information Systems Commons

Please take a moment to share how this work helps you through this survey. Your feedback will

be important as we plan further development of our repository.

Recommended Citation Recommended Citation
Gunawardana, Stephan, "Resume Parser and Job Search" (2022). Williams Honors College, Honors
Research Projects. 1478.
https://ideaexchange.uakron.edu/honors_research_projects/1478

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College,
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more
information, please contact mjon@uakron.edu, uapress@uakron.edu.

https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1478&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1478&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1478
https://ideaexchange.uakron.edu/honors_research_projects/1478?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1478&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Gunawardana 1

 Honors Research Project

Submitted to

The Williams Honors College
The University of Akron

Approved:

 Date:

Honors Project Sponsor (signed)

Honors Project Sponsor (printed)

 Date:

Reader (signed)

Reader (printed)

 Date:

Reader (signed)

Reader (printed)

Accepted:

 Date:

Honors Department Advisor (signed)

Honors Department Advisor (printed)

 Date:

Department Chair (signed)

Department Chair (printed)

En Cheng

4/14/2022

Timothy O’Neil

 Resume Parser and Job Search

Stephan Gunawardana

Department of Computer Science

Timothy O’Neil

4/14/2022

Yincai Xiao

Zhong-Hui Duan

4/13/2022

O'Neil,Timothy W
4/14/2022

O'Neil,Timothy W
4/14/2022

Gunawardana 2

Resume Parser and Job Search

Stephan Gunawardana

Williams Honors College

The University of Akron Honors Research Project

GitHub Link: https://github.com/sgun7/HonorsProject

https://github.com/sgun7/HonorsProject

Gunawardana 3

Table of Contents
 Abstract ……………………………………………………………………....4

 Preface ………………………………………………………………………..5

 Flow of Website ……………………………………………………………...8

 Preparation……………………………………………………………………9

 Breakdown of website ………………………………………………………12

 -Main Idea……………………………………………………...12

 -Home Page…………………………………………………….13

 -User Authentication…………………………………………...14

 -Resume Upload and Parsing………………...…….…………..17

 -Viewer…………………………………………………………21

 -User Page………………………………………………………22

Challenges ………………………………………………………………………24

Conclusion………………………………………………………………………25

Gunawardana 4

Abstract

The basic goal of this project was to create a four-tier web application which

would allow users to upload their personal resumes to the website, and it ultimately

would parse the resume and look for keywords. Then using these keywords, it would

use a job API to look for these values and ultimately display job information to the user

based on their skills. While applications exist which would look for jobs based on skills,

it was mostly manually inputted skills. However, with my application you can simply

upload your resume to the website, and it will basically take care of this step for you. It

must be noted that this is also a four-tier web application therefore I have also built-in

user-authentication with sign up and sign in. Therefore, each user will have their own

profile, which is protected by a high level of authentication. Lastly, the user accounts will

also be supported by a modern backend database therefore all the values such as your

skills, username, and preferred job offers will be saved uniquely for each user. There

was a lot of learning included within this project, while I was not new to web-

development this project required a lot more experience than what I had at the

beginning of the project. This project implements the use of Vue for the frontend and

Firebase/Firestore/Google storage for the backend.

Gunawardana 5

Preface

 There are several goals I wanted to achieve with this project. The main one

would be to ultimately learn something new and apply this a real-life application.

Another one of my goals which ultimately aligns with the purpose of the honors project

was to implement a set of learnings I have grasped over the years through classes

related to my major. Lastly, I wanted to create a project which would not simply be a

copy of something which is already created, instead something new which has the

potential to be helpful for various users.

 As mentioned within the abstract this would ultimately be a four-tier web

application which would allow users to parse their resume and do an automatic job

search based on the skills of that person’s resume. I have personally gone through the

job-search process for a college student, and it tends to be a very long and tedious

process. With the use of top job searching websites, most websites I did research on

seems to require that the user manually inputs keywords/phrases. While this can be

seen as a trivial task it can somewhat be difficult if you have a lot of skills and your job

preferences are large. Therefore, with this application the whole job search process will

be simplified and allow users to focus on the real goals of jobs such as the interview.

Gunawardana 6

 (Figure 1)

 Another point of focus for this project was the four-tier web application. The

details of my websites relation to this will be displayed later within the paper, however I

wanted to discuss the idea behind it and how it ultimately forms the backbone for my

website. I first learned about four tier web applications in ISP class during one of the

semesters. The basic idea behind the four-tier web application would be that a normal

web application being broken down into four main sections. Referring to figure 1 the first

would be the client tier in which is the topmost layer, this is most likely the user interface

and is the presentation of the website. Next, the logic tier is the middle section in which

it coordinates commands, makes logical decisions, and acts as a connection between

the two surrounding layers. This layer can be broken down into two sections within a

four-tier web application. Lastly would be the data tier in which the data is stored and

retrieved from. One key component to understand with this diagram is the arrows

moving back and forth, there is no direct flow of data or logic on a four-tier web

application, in fact data can be received or sent out from all tiers. Lastly, one of the main

Gunawardana 7

reasons I chose this type of architecture is the fact that encapsulating code within

certain sections allows the developers to benefit greatly. For example, detecting bugs

when the code is broken down into several sections becomes somewhat of a trivial task

simply because it becomes very evident where the bug is occurring. Also, if we are

creating a large codebase, it can be somewhat difficult to update or change sections of

the code if everything was bunched together, however with this architecture changes

are very efficient and effective. This type of architecture is also very common within the

modern world, therefore this sum of all the reasons why I chose this architecture for my

own website.

 (Figure 2)

Gunawardana 8

Flow of Website

 Figure 2 highlights the main flow of the website. Each box representing a main

feature included within the program comprised into a singular term. The arrows

represent the flow of data or routes throughout the website. It must be noted that there

will be other accessible assets to the website however this diagram will highlight only

the main ones. Also, each box within the diagram will be explored thoroughly later within

the paper, however this section will primarily focus on the flow of the main website.

 First, we start of at the main home page, this is where every user will be routed to

despite their account status. Therefore, all users will see the same homepage. It will

contain a sign-up notification button which will allow users to sign up for the website.

Coincidently, it will also contain a log in button for previous users and this will ultimately

split the path for the flow of the diagram. Next, the user will be taken to a register page if

they chose to sign up for the website. This webpage will contain an input for username,

password, and bio which will be updated within the backend-database. The same thing

will occur for the log in feature however instead of updating the backend it will perform a

check on the backend to validate if the user has typed in the correct username and

password. It must be also noted that this will use modern validation/security protocols to

maintain reliability and security of the website. Also, the sign up will contain a one extra

step when compared to the log in. Which would be the upload resume page, which will

simply contain the upload drag and drop feature added for the file. One thing to note

from this page is that this will only upload the resume to our database and will not

actually parse the resume. We are under the assumption that the logged in user already

has uploaded the resume.

Gunawardana 9

 The final section to the flow diagram starts out where the resume is parsed, this

will not be found within a separate page instead the user will be able to simply upload

the resume, and this will be displayed as a background function. The details of the

parsing will be explained later within the paper. Next, the data or keywords which are

pulled from the resume will be uploaded to the database for each user, therefore each

user will contain a set of keywords which will pay a key role searching for the

appropriate job results. The last destination of the flow diagram will be a physical page

which displays the job results, in a table manner. This diagram will be pulled from an

API call. The keywords parsed from the resume will provide the route for each API call

which will be displayed in an appropriate manner. This will be the most used page on

the website most likely because it displays important data required to accomplish the

main goal of the website. Also, the movement from one page to another will be very fast

and only be limited by human error, simply because we are using modern frameworks

and database for this project. Another thing to note would be the fact that lots of these

pages will be safeguarded with route protection based on the current user’s login

credentials. Therefore, you will not be able to skip into pages which are guarded by the

user protection

Preparation

There were several steps taken before preparing for this project. This was not a

simple idea which was easily thought of overnight or over a short period of time. In fact,

this project started out as a completely different project. However, after discussing

several ideas with my sponsor for the project we were able to finally decide on a proper

idea. When I started this project, I knew I wanted to work with some type of four-tier web

Gunawardana 10

application because I was passionate about this project and wanted to learn more. It

was evident from several classes I took that there was a lot more for me to learn and

understand about this type of work. Therefore, all these indications lead me to pursue

this current project.

As mentioned previously there were several iterations of this project throughout

the process of creation. There were three main iterations of this project which eventually

progressed into the result. First, it started out as a vague idea of a website which serves

to be a large social media, which provides to make a social space where users can

communicate about their work preferences or work experiences to help with the hiring

process. There were two main problems with this idea. First, this type of idea was

already heavily populated, there are several websites like this in the real world such as

LinkedIn and Glassdoor. The other problem would simply be that I would not be really

adding anything unique from the other existing websites, therefore there would be no

enticement for the users to switch platforms because it would be providing the exact

same benefits. After this idea, I decided to pursue an idea which would serve as more of

website which allows users to learn and understand the properties and tools used within

frontend development. This would simply be a website which would allow users to

complete certain frontend tasks, such as creating a simple CSS model to represent the

powers and usability of CSS. There were also several problems with this idea in my

opinion. There was no reason to implement a backend database for this project,

therefore it would ultimately not have been a four-tier web application. Also, this would

turn my project more into a research project instead of a project which is focused on

becoming a real-world product which could be used by day-to-day people. After several

Gunawardana 11

weeks of discussing ideas with my sponsor, I was able to final come up with my final

project. This as described above would be a project which allowed users to upload their

own resumes to the website and it would automatically parse it and do a job search

based on the keywords found within the resume. This covered several problems, first it

allowed the use of a backend database since the users needed profiles to store their

own resumes. Also, there were none to a few websites which offered this feature

therefore the market for this type of product was not populated at all. Lastly, this allowed

me to add my own personal touch to the website, instead of using an already existing

idea.

The last thing I wanted to discuss within this section would be the specific

technologies I decided to use within project to gain the most efficient and proficient

methods. First for the frontend, I chose to use Vue. My three choices were Angular,

Vue, and React, while the other two options were viable, I had the most experience in

Vue, therefore it was the obvious choice. While I did have experience this did not mean

I did not have to learn anything new. In fact, I spent the first couple weeks of the project

simply reviewing what I had learned in previous classes and learning new material. My

experience with languages such as JavaScript expanded a lot over the period of this

project. There were also several small libraries which are referenced within the frontend

which are included within the headers of each “.vue” file which are used within my

project but would be too trivial to list each of them. Some notable libraries used would

be first “Vuetify”. Vuetify makes component creation much similar because it already

contains pre-loaded components within the libraries therefore this saves countless

hours of coding CSS, which is not the focus of my website. Another resource used

Gunawardana 12

would be the “Coolers” website which provides users with custom color pallets which

are popular for modern day websites. This allowed me to choose a style for the website

which would give it the modern looking style. Lastly, I also used the “JSON” JavaScript

library which became a key component in my project simply because lots of the data

being read in from the API was created as a JSON, therefore this library allowed me to

parse this data properly and ultimately display in the frontend. For the backend, as

mentioned previously I ended up choosing Firebase. There are a couple reasons I

chose to use Firebase for this project. Like my frontend’s choice, I had already previous

experience using Firebase, but for a much smaller and easier project. Firebase also

contains modern day user-authentication and protection overall over the database;

therefore, it provides the best protection without needing implementation by developers

to increase security. Also, paired with this the cost of the website using firebase for my

database and storage was very minimal. Lastly, the data visibility of using Firebase is

easy to understand from the developer’s perspective which makes the whole process of

this project much easier. Those roughly cover most of the main technologies used, each

technology will be expanded on within the detailed discussion further down the page.

Breakdown of Website

Main Idea

 This section of the paper will highlight the main piece of written content about the

project. As far breakdown of this section, I will break each subsection into the title of

each page of the website. However, this does not mean all that this section will contain

will be limited to the frontend. Instead, I will highlight the frontend and backend code

Gunawardana 13

involved within each page. This also means that it will contain snippets of code to

understand each process.

Home Page

 (Figure 3)

 This page is main landing page of the website, and is the place that all users,

member or non-members, will be taken to when first accessing the website. There is not

much involvement within the homepage with the backend, therefore most of the code

for this section will be frontend focused. We will focus on Figure 3 for this

representation. First, would be the carousel component which is shown first underneath

the navigation bar. I chose to add this to give an aesthetic look to the website, since this

webpage will be visible to all users. A carousel component basically takes in images as

vue props and creates a slider which will go to the next image based on a customized

timer. Not visible within the picture, but it also contains a hover-over CSS effect which

will essentially active when a mouse-hover occurs over the object, and it will trigger the

Gunawardana 14

image to move-over right away without waiting for the timer to trigger. Also, there are

two cards found in figure 3 which also contain various CSS properties. For example, it

contains the hover over effect, shadow-effect, and flexbox sizing as well. These will help

direct users to the correct page based on the button they clicked.

 (Figure 4)

 Lastly, these highlight one of the key features of the using vue components, and

that would be the use of props. As shown within figure 4 the component “image-card-1”

is only one component, however it is displayed on the frontend and two different

components with different functions. Therefore, I created a component which can take

in multiple props, such as “action”, “paragraph”, “title”, and “imageSource” as seen in

Figure 4. Thus, I only need to write the code once for the card, but the props passed

into the component should make each instance unique based on what is passed.

User Authentication

Gunawardana 15

 (Figure 5)

 The user authentication section is a key feature of the website, because it will

allow users to log in/sign up to ultimately save their data. This will contain frontend and

backend use. As seen within figure 5 the sign-up card will contain a box for email,

username and password. In similar fashion the log in page will only contain the email

and password to log in. The frontend functionality is simple, it just saves each input box

value as v-model and directly imports it to firebase through the firebase API. This API

was assessable from the frontend due to several imports included within the main

webpage.

 (Figure 6)

Figure 6 displays the initial connection to the firebase API. The “.auth()” command will

be directed towards the firebase author authentication database. This is where all the

encryption occurs for each user account. However, within the “.then()” statement we

also store the user information within “firestore database” which is different from the

authentication database. The reason for this will be in the next paragraph.

Gunawardana 16

 (Figure 7)

 Figure 7 highlights the main authentication database; this will update real-time as

users sign into my website. This saves presets as email, creation date, and user UID.

The user UID is very important because it is a random unique key generated for each

user through firebase, this allows me to refer to each user uniquely within the frontend.

As mentioned previously Firebase does not allow developers to save unique saved

values such as usernames within the authentication database, instead we must use the

Firestore Database to save unique values.

 (Figure 8)

This is evident within figure 8, as it shows the usernames being stored with each unique

user. The user’s documents column in this are organized by firebase UID, therefore no

two users will be the same. This allows us to query each field for each unique firebase

Gunawardana 17

UID. The code for the query will be shown on a different section to highlight the features

of that.

Resume Upload and Parsing

 (Figure 9)

 As mentioned previously the resume will need to be parsed therefore, we must

have some type of upload feature for the user. As far as design goes, I decided to go

with a modern day drop design for files. Therefore, when a user clicks on the blue box,

they will be directly given access to their file explorer to update their own resumes. One

unique thing which occurs within the background is that we store the resume in the

backend so it can be referenced for each unique user. Firebase also offers a storage

branch which perfectly provides us with an opportunity to directly store each file in an

organized manner.

 (Figure 10)

Gunawardana 18

 (Figure 11)

Figure 10 displays the main part of the code which will store the file within the

appropriate folder in the storage. First it accesses a large file containing all users titled,

“/users”. Then it will obtain the current “user.uid”, it is not as simple as referring to it

directly as shown in Figure 10. This will be run by a separate firebase function to obtain

the current and updated UID value. Then finally the resume is titled “Resume.md” and

stored as a file. Then finally, we run a “storage.put()” to send the object to the database.

Also, this will trigger an alert which lets the users know that the file was updated

successfully. Figure 11 is a representation of what it looks like within the firebase UI.

Just to clarify this would be within the “users” folder containing sub-folders which are

appended directly to the UID of the user. Therefore, since these are unique and will

never be the same, this provides us with a way to make sure there are never any

conflicts and users are not mixing up their own resumes with other users on the same

database.

Gunawardana 19

 The next section is another key part of my website, this would be the parsing

done within my website. As mentioned previously we store the user’s resume file within

our database, so we can parse it. Another thing to note would be that the website only

accepts “.md” files for a resume. There are several reasons why I chose this, I will cover

more within the challenges section on why I decided to choose these types of files over

things such as PDF’s or word Documents. There are also several benefits for “.md”

files, they are very suitable with all forms of code and could be directly used within the

code base. It is also supported within GitHub, which greatly aids in displaying the data

in an organized manner. However, file formats such as PDF’s and Word are not

supported by GitHub and can lead to confusion.

 (Figure 12)

Figure 15 is a common example of a resume file which a user may upload to the

website to get parsed. From a visual perspective it might seems as if it is just bolded

Gunawardana 20

text followed by normal text. However, since the file is a “.md” file there are certain

characters in front of headers of “.md” files and normal text in “.md” files as well. Most

resumes are organized in a way they are titled by headers followed by more precise

language such as details about each section. Therefore, my parser will approach it in an

organized way such as described above. After it establishes this, it will parse the

headers and input them into essentially a JSON dictionary in which the header values

are the keys, and the small writings are the key values for each JSON object. While, this

part sounds simple, it was difficult to do this with code directly imported from a “.md” file.

For example, there were key things to look at such as getting rid of commas or other

variables which would affect the query. After spending a lot of time working with this

problem and eventually solving it, the whole “.md” file was given to the developer as a

JSON object, with specific keys as headers. Therefore, after this is complete, I do a

query on a keyword search for the skills of the resume and then I will essentially get the

values for those skills into my database. One thing I wanted to expand on would be the

keyword search for the skills. In the future, I would like to use a common database of

keywords to search directly for skills in the resume to make it more usable with all

formats of resumes.

Gunawardana 21

 (Figure 13)

Figure 16 displays this therefore, since one user can have multiple skills, it would not

make sense to append to one variable within the Firestore. Thus, we first get the users

UID once again to append to unique users’ folder. Then, we simply append an array of

skills to the user to pull later within the website.

Viewer

 This is a simple section, so after the user has uploaded their resume, they will

receive a confirmation alert letting them know that the resume has been updated and

added to the backend. However, I also provided a feature for the user to review the

resume, to provide a resource for the user to validate their inputs.

 (Figure 14)

 Now there is a box button, as highlighted within the figure 17, for the viewers to

access this page. After the viewer clicks this button, they are guided to the viewer page,

which contains simple logic.

Gunawardana 22

 (Figure 15)

I used a library called “vue-markdown” which is used to convert the “.md” file directly to

html. Therefore, with vue being a dynamic framework, this directly allows me to display

HTML this will be shown directly as shown in figure 18.

User page

 The last page is also a key page for the website. This will most likely be the page

users spend most of their time on clicking other various job links and looking through

each job descriptions and names. When the user first access this page, in the

background the frontend will do a query for the skills uploaded from their resume. In

fact, there is a safeguard inputted in which if the user has not updated their skills they

will get a message letting them know that there is no skills on their account and require

an upload of resume. When the skills are present a button will appear which will allow

users to click to generate their table of results of jobs to look for. I decided to go with a

public job API from “Adzuna” which provides me with around certain number of queries

Gunawardana 23

per day. If I wanted to make this website eventually go public, I would need to increase

this query amount to allocate for the number of users, however since this is mostly for

display the default amount is fine.

 (Figure 16)

Figure 19 highlights some the key code which is used for the API call. I used Axios as

my main caller simply because it is used a lot within the industry, and it provides a safe

and easy protocol for API calls. First, I get the URL for the API call with the custom

constraints such as pulling 4 results per skills and limiting the job search to only US.

Each skill is directly inputted into the URL as a keyword for the API call to get the

response. Then the response is taken in as an object and converted into a JSON.

Lastly, these results are pushed into another array to store the data. The reason for this

second array is simply because users can have very varying skills, for example you

could be could in English and be skilled in coding therefore it will make sure to query for

each of those skills and append to separate arrays. Therefore, if you have four skills

appended to the backend, then each skill will generate four jobs for a total of sixteen

jobs.

Gunawardana 24

 (Figure 17)

 Figure 20 highlights the table which will be displayed for each user. It will contain

the display name, title, location, and link for each job which was queried. From the

diagram above it seems the users was more skilled towards computers and software;

therefore, they got a lot of results of C developers, frontend work, etc. The users will

also able also query the data within the table if the resulting table is large.

Challenges

 There were also several challenges which I faced while working on this project.

Without going over each detail of the solution and problem, I will briefly highlight them.

First was the challenge of simply understanding the material and working with the

backend database. As mentioned previously, I was somewhat new to four tier

applications, therefore I needed to watch several tutorials and spent weeks studying the

material to get grasp of what is going on. After getting over this initial bump, I faced the

problem of figuring out the purpose for this website, as mentioned previously the original

idea started out as a tutorial website, however it transformed into resume parser

Gunawardana 25

website. This was mostly due to constant meeting with Professor Xiao and discussing

the next steps for this process. There were also several coding problems I ran into, but

it would be too tedious to mention here. The next challenge was the parsing of resumes,

originally, I started with the use of PDF’s however it became apparent that PDF parsing

was not the best option and would most likely lead to confusions within the API call.

Therefore, “.md” file was chosen for this matter. The last challenge was the organization

of the backend. This was solved simply by appending things users had within their own

profiles all back to the user UID thus creating a unique value for all things which belong

to that specific user.

Conclusion

I think the project turned out great there, however I do believe there is room for

improvement. Therefore, there are several constraints I wanted to advance and deliver

if I continue working on this project. One thing I would like to improve on would be the

testing of the website. There are several testing capabilities with frontend work, however

due to the time constraints I was not able to accomplish this. While the website works

soundly, and I was able to test multiple edge cases there is still possibilities of faults.

Another thing I wanted to improve on would also be the diversity of the parser, I

eventually want to be able to accept any file type and broaden the keyword search of

the parser. This project allowed me to combine my knowledge I have learned

throughout the years in college to create a product which can be used in the real world.

This project had helped me grow as a developer and truly reflects a large portion of my

learning from Akron. This project also provides me with an opportunity to display to

potential employers in the future.

Gunawardana 26

References

[1] “Introduction - Vue.js.” - Vue.js, https://v2.vuejs.org/v2/guide/.

[2] “Job Search - Find Every Job, Everywhere with Adzuna.” Adzuna, 12 Apr.
2000, https://www.adzuna.com/.

[3] “Firebase Documentation.” Google, Google, 2000,
https://firebase.google.com/docs.

[4] NGINX, Patrick Nommensen of. “Time to Move to a Four-Tier Application
Architecture.” NGINX, 10 Sept. 2018, https://www.nginx.com/blog/time-to-
move-to-a-four-tier-application-architecture/.

https://v2.vuejs.org/v2/guide/
https://www.adzuna.com/
https://firebase.google.com/docs

	Resume Parser and Job Search
	Recommended Citation

	tmp.1650316058.pdf.fV2Bi

