
The University of Akron The University of Akron

IdeaExchange@UAkron IdeaExchange@UAkron

Williams Honors College, Honors Research
Projects

The Dr. Gary B. and Pamela S. Williams Honors
College

Spring 2022

Data Processing in a Database Management System Using Data Processing in a Database Management System Using

Parallel Processing Parallel Processing

Stephen Shears
sws30@uakron.edu

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

 Part of the Databases and Information Systems Commons

Please take a moment to share how this work helps you through this survey. Your feedback will

be important as we plan further development of our repository.

Recommended Citation Recommended Citation
Shears, Stephen, "Data Processing in a Database Management System Using Parallel Processing"
(2022). Williams Honors College, Honors Research Projects. 1472.
https://ideaexchange.uakron.edu/honors_research_projects/1472

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela
S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University
of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College,
Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more
information, please contact mjon@uakron.edu, uapress@uakron.edu.

https://ideaexchange.uakron.edu/
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honors_research_projects
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honorscollege_ideas
https://ideaexchange.uakron.edu/honors_research_projects?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://survey.az1.qualtrics.com/SE/?SID=SV_eEVH54oiCbOw05f&URL=https://ideaexchange.uakron.edu/honors_research_projects/1472
https://ideaexchange.uakron.edu/honors_research_projects/1472?utm_source=ideaexchange.uakron.edu%2Fhonors_research_projects%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mjon@uakron.edu,%20uapress@uakron.edu

Data Processing in a Database Management System Using
Parallel Processing

Stephen Shears

Spring 2022

Honors Sponsor: Dr. Yincai Xiao

Honors Reader 1: Dr. Tim O’Neil

Honors Reader 2 and Faculty Advisor: Dr. Zhong-Hui Duan

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES iii

ABSTRACT iv

CHAPTERS

I: INTRODUCTION 1

II: DESIGN 4

III: IMPLEMENTATION 6

IV: EXPERIMENT 10

V: RESULTS 13

 Insert Query Results 13

 Select Top Query Results 16

 Delete Top Query Results 18

VI: CONCLUSION 21

BIBLIOGRAPHY 23

iii

LIST OF FIGURES

Page

Figure 1: Design Schema for movies table 4

Figure 2: PhpMyAdmin movies table 6

Figure 3: Microsoft SQL Server Management Studio movies table 7

Figure 4: Insert query creator program 9

Figure 5: Insert query runtime results in milliseconds 13

Figure 6: Select top query runtime results in milliseconds 16

Figure 7: Delete top query runtime results in milliseconds 18

iv

ABSTRACT

 This research project will be focused on parallel processing as it is used with

database management systems to process data. Specifically, the goal is to see if creating a

database management system with parallel processing at the forefront of its data

processing can offer enough of an efficiency increase to warrant using it against a

sequential database management system and is it possible to make that system just as

reliable as those databases without parallel processing. A parallel processed database will

be created with a focus on monitoring its data reliability and consistency. It will then be

compared to two sequential databases to compare their performance and determine the

effectiveness of the parallel processed database.

 This project has resulted in both the creation of a sequential database and a

parallel processed database. Numerous tests have been run on both, and while it may be

very beneficial to allow for a database to have parallel capabilities, the efficiency and

speed up that a parallel database may have over a sequential do not warrant the use and

creation of it with the technologies used at this time.

CHAPTER I

 INTRODUCTION

 A computer database is a completely computerized database that holds data. This

data is often separated into tables. What will specifically be used within this project is

what is known as a relational database. These databases are created with the idea in mind

that each piece of data within a particular table are a series of related data. These tables

often have a unique identifier to differentiate each entry in the table, and all the data

within that entry can be found from that unique identifier otherwise known as a key. The

data that is contained within a table can vary greatly, as do the strategies that can be used

to create them. Whenever an action is taken on a database, this action is known as a query

that is sent to the database to complete an action. These queries can range from inserts,

searches, and deletes to name a few.

 Parallel processing is the practice of using multiple processors or cores within a

processor to complete a job or program. This is typically done by splitting up the data

that must be processed into separate sections and giving each processor a different

section. This must be done very carefully however, as these jobs can run into different

problems, such as a race condition, where both processors are trying to access the same

piece of data at the same time, and the one that gets it first may not be the one that should

have it first. When this happens, it can cause whatever program is using parallelism

within it to have unpredictable results. Safeguards must be put in place, and these

2

safeguards can cause the parallelized code to perform worse than if the code did not have

it.

 This is where the question of how efficient a parallel database can be was

originally formed. Most databases are sequential databases, meaning that all the work

done for each query is done in a sequential order and each individual query is done one

after the other without any parallelism. Now this does not mean that a parallel database

does multiple queries at the same time, and this is because it would be a very bad idea to

do so. Suppose there is a database, and two queries are made at the same time. One query

will insert a new item into a table within the database, and another will list out the data

items within that database. If the insert is incomplete while the other query is run, then

the new item will not be listed in, but if the insert completes before the list, then the new

item will appear. It will be entirely up to chance which one of these outcomes will occur

if both are attempted at the same time. Unpredictable results are not a sustainable

practice, since no one is able to know what will occur when the queries are ran because

they are in the race condition that was discussed previously. Instead, a parallel database is

designed to split single queries apart and allow for each processor on the host machine to

perform each part of the query that it was given. Theoretically this cuts the time to

perform each query immensely since each processor is working at the same time as each

other.

This project was intended to find a definitive answer to whether it was worth

development time to create a parallel database over a sequential database. During this

project two databases were created along with three separate tables across two different

languages. Two of these tables were created to be entirely sequential based. One was

3

written in MySQL, a strictly sequential language that would display the runtimes for a

database that was optimized for sequential queries. The other was written in MSSQL, a

language that allows for both optimized parallel processing, and sequential queries, and

this table was created as a control for the last table which was created for specifically four

processor processing. This was to account for any quirks of the MSSQL language that

could have arisen during testing and to compare each tables’ data reliability and

consistency between a query with parallel processing, and one without within the same

language framework.

5

 This simple design for the table allowed for the project to be able to focus

specifically on the performance on each query, while having a variety of datatypes and

simulating what would be inside a possible real database. These datatypes are as follows,

movieID is an int, title is a string, description is a string, runtime is an int, and budget is

also an int. Implementing the key as well allowed for the quickest optimized select

queries and better organized tables.

 Besides the tables, there was one other element of the project that had to be

designed separately. This other element was a separate program that was designed to

create the queries that would be used during the project, such as a large number of inserts

with unique data and create queries that are wrote in different languages. Exact

implementation of this program will be gone into depth within the next chapter, but it was

designed with ease of use and responsiveness at its forefront, since it would be used many

times to create all the queries that were required during the project.

6

CHAPTER III

IMPLEMENTATION

 As stated previously, two main languages were used to facilitate the

implementation of the three tables. To start, MySQL was the first database to be created,

and the one I had the most experience with going into this project. It is an optimized

sequential query language that was essential in the testing process. It was very important

that this project simulate real databases as close as possible to make the results applicable

to real scenarios. To this end, these databases were hosted on virtual servers. To set up the

server that would host the MySQL database on, I made use of WampServer, and

PhpMyAdmin.

 WampServer is an application that can be used to set up a virtual server on a local

machine. It performs this through the machine’s localhost and allows the database to be

accessed through a browser, in this project’s case, Microsoft Edge. As for PhpMyAdmin,

it served as a direct line to the database. I was able to perform all the necessary queries

through here, and the software offered the runtime of each query, which was essential to

my research. Figure 2 shows an example of PhpMyAdmin.

7

Figure 2: PhpMyAdmin movies table

 For the parallel database, MSSQL was chosen as the language to be used, and it

was created shortly after the MySQL database. The reason for using MSSQL was because

it offered a lot of freedom when it comes to how to optimize queries, and whether to use a

sequential system to process data or a parallel system to process data, a system that not

very many SQL languages offer. Another benefit of using this language over another

parallel language, was the amount of information that it could give you when interacting

with a server that is ran with Microsoft SQL Server (MSS) in conjunction with Azure, and

Microsoft SQL Server Management Studio (MSSMS) running as the interface to interact

with the MSS and perform all the queries and tasks required of MSSMS to work with

databases.

 MSSMS offers a lot of tools for a developer to understand the exact performance

of the server, but the one most focused on during this project was the client statistics options

within the studio. It not only gave all the information on each individual connection being

performed while executing a query, but it also had the exact execution and processing time

that a query spent while it executes the query on the database. This studio is also where a

lot of parallel processing options in MSSQL can be found. The sequential table was set up

to specify that only one process could be running at a time, causing all queries to be

8

completely sequential, while the parallel table was set to make use of four processes and

processors at a time, forcing it to always be processing data in a parallel manner. An

example of the MSSMS interface can be seen in figure 3.

Figure 3: Microsoft SQL Server Management Studio movies table

 The final piece that had to be created before this project could begin the testing

phase, was that there had to be a way to create a series of test queries that would allow for

large numbers of queries to be performed. The initial idea was to create a separate php page

that would connect to each database and run the queries while outputting the runtimes for

each query performed. However, this led to a myriad of issues, including incorrect runtimes

that were caused by a delay in the page loading in the Edge browser. Instead, I decided to

run the queries within both PhpMyAdmin, and MSSMS since they had accurate runtimes,

and a better interface.

 This created another issue however, since some of the queries were relatively easy

to write out each time I needed to test in the database, such as the select and delete queries,

but the insert queries were another matter. I needed to be able to insert up to 16,000 unique

9

pieces of data into the database with queries. This led to the creation of a rather simple C++

program, that would prompt the user if they would like to create a new insert query, and

the number of movies they would like to insert. This new query would be placed into a text

file, which then could be read into each database to be completed as the query. Upon

completion, the program would output three files with the number of new movies specified.

One file written in MySQL, and two files written in MSSQL, one for the sequential table,

and one for the parallel table. A snippet of the code and program running can be found in

figure 4.

Figure 4: Insert query creator program

10

CHAPTER IV

EXPERIMENT

 Once every database and program that would be needed was created, the next step

was to run tests on the database that could measure the runtime of each query. With the

runtimes listed out in a table, the efficiency and speed up or slowdown of running a

parallel database against a sequential database could be found. These queries also had to

be something that could done on real databases, as to simulate real situations. This also

had to include variable large numbers, which would also give the scalability of each

database and how it handles queries at small and large numbers. To this end, three

different series of tests were ran on the three databases, and the efficiency and speed up

was found for each.

 The first series of tests were a large series of inserts into each database. The

number of inserts into each table went as follows, 1,000, 2,000, 4,000, 8,000, and 16,000.

With each query having this large number of movies being inserted into each database,

this caused some issues with the MySQL database. With PhpMyAdmin, there is a limit to

the amount of new data that could be inserted into the database within a query. This limit

was 1,000 and could not be changed. To counter this, I separated each insert into multiple

queries, with each having about 992 movies within the insert, for all three databases. This

meant that there were two queries in the first test, three queries in the second test, five

queries in the third test, nine queries in the fourth test, and seventeen queries in the final

test. The reason for this choice was to make sure that even though MSSQL could run

11

more than 1,000 pieces of data within an insert at a time, that the process was the same

for each database. This change is reflected in the insert query creation program and is

made relatively simple because of it.

 The second series of tests were a lot simpler than the requirements to make the

insert program working and perform the insert queries. This series of tests involve the

select top function within both MySQL and MSSQL, with only slight differences in

syntax, with MySQL making use of the limit keyword. The test was to select the top

1,000, 2,000, 4,000, 8,000, and 16,000 movies within the database and display them.

However, when I performed the first two queries on the MySQL server, the database was

very slow to perform the operation, even though the actual processing time was not long

at all. Then the final three queries could not be completed at all, with the server simply

saying an error had occurred. I believe this error was caused by a lack of system memory

being allocated to PhpMyAdmin and my browser, causing the query to try to squeeze all

of the data from the table to be displayed into that memory. The memory would

completely fill up, and then the query would time out and display the error that had

occurred. Despite this failure in the PhpMyAdmin, MSSMS was able to perform these

queries flawlessly, and this test also gave the opportunity to look over each input in the

database and make sure that the data was reliable from the massive inserts as a secondary

function. The results of these secondary findings will be discussed in the following

chapter.

 The final series of tests made use of the delete top function. Much like the last

test, this test would select the top 1,000, 2,000, 4,000, 8,000, and 16,000 movies in the

database, but it would delete those movies from the database in bulk. When performing

12

these queries on the MSSMS they went through flawlessly and quickly, with no failures

and no issues on either table. Unlike the previous test, PhpMyAdmin also experienced no

failures and was executed rather quickly.

 After collecting this data in each server’s runtime, the question then becomes how

to compare and gather useful information to the question of whether it would be worth it

to implement a parallel database over a sequential database. The answer to this is to find

the speed up and efficiency for using the parallel database over the sequential ones. The

speed up can be found by dividing the runtime of the sequential query by the runtime of

the parallel query. As for the efficiency, this can be found by dividing the speed up metric

by the degree of parallelism that the parallel database used, which in this case is always

four. Each of these concepts will yield a solid metric to look at when comparing each

database and will reveal the actual benefit of using a parallel database over a sequential

database.

13

CHAPTER V

RESULTS

 The results of each test that was run on the three databases was separated into

three different excel tables. This chapter will first look at the individual results of each

table’s query runtimes. Then it will discuss the efficiency and speed up of the parallel

table compared to each sequential database.

Insert Query Results

Insert Query Runtimes and Efficiency Results

 MySQL

4 Core

MSSQL

1 Core

MSSQL

MySQL

Speed

up

MySQL

Efficiency

MSSQL

Speed

up

MSSQL

Efficiency

1000 0.123 0.128 0.141 0.961 0.24 1.102 0.275

2000 0.177 0.266 0.47 0.665 0.166 1.808 0.452

4000 0.34 0.454 0.47 0.749 0.187 1.035 0.259

8000 0.617 0.257 0.846 2.401 0.6 3.292 0.823

16000 1.27 0.438 1.71 2.9 0.725 3.904 0.976

Figure 5: Insert query runtime results in milliseconds

 When it comes to the runtime of MySQL, its runtime is rather linear. Each

runtime is about double the runtime of the previous, as would be expected in a process

14

that is sequentially inserting data into the database. It is also ran very quickly for the first

two small inputs of data. This trend will continue throughout the other tables, with the

MySQL database, where the first two are very fast, and then the other queries will run in

linear time.

 With the sequential MSSQL database, an interesting anomaly occurs. Across the

runtimes, they all run slower than the MySQL server, but the runtimes for 2,000 and

4,000 inserts were the same. I decided to test both a few more times to see if there was

just some sort of slow down for the 2,000-insert query, but each time, they both ran at

about 0.47 of a millisecond. Other than this oddity, there is little more to note about the

runtimes for this set of tests.

 The parallel MSSQL database for the first query runs very similar to the

sequential database in MSSQL, and slightly slower than MySQL for the first three

queries. However, it seems that once the number of inserts reached 8,000 and beyond, the

performance of the parallel database went up dramatically. For both 8,000 and 16,000, it

was able to achieve very small runtimes, even smaller than the runtimes of the same

database for smaller inputs of data. It also outpaced both other sequential runtimes for

8,000, and 16,000. With this series of query tests in mind, this database is not very

scalable. It gets a very big performance boost at large numbers, but for smaller queries, it

does not run as well.

 When the parallel database is compared with the MySQL database in terms of

speed up and efficiency, it is not as beneficial as one would expect out of using

parallelism as opposed to the sequential database. The average speed up of the parallel

database is about 1.535 and its average efficiency is only about 0.384. What this data

15

means is that compared to MySQL, using the parallel database offers very little speed up

and does not make full use of the four cores it was given compared to the sequential

database. Once it is considered that the first three smaller queries had better performance

on the MySQL server, it could potentially be detrimental to use the parallel database over

the MySQL server in terms of performance.

 As opposed to the sequential MySQL server, the parallel MSSQL server always

had a better runtime than the sequential MSSQL server. The average speed up in this case

was about 2.228, and the average efficiency was about 0.557. While these numbers may

not seem very different from the previous comparison, they are actually very

substantially different. These results mean that the parallel database is on average

performing a little over double the speed of the sequential database but is still operating

at only about half of the efficiency of the sequential database.

These results seem to be indicative of the lack of good scalability for the parallel

database that was described earlier. At higher numbers of data being inserted, the parallel

database was making full use of its available cores, at its highest point being 0.976

efficiency when being compared to the sequential MSSQL server. At its lowest efficiency

it was at 0.259, however, which is not a substantial enough efficiency and speed up boost

to warrant a preference for the parallel database.

16

Select Top Query Results

Select Top Query Runtimes and Efficiency Results

 MySQL

4 Core

MSSQL

1 Core

MSSQL

MySQL

Speed

up

MySQL

Efficiency

MSSQL

Speed

up

MSSQL

Efficiency

1000 0.032 0.032 0.032 1 0.25 1 0.25

2000 0.058 0.088 0.119 0.659 0.165 1.352 0.338

4000 DNF 0.168 0.128 NA NA 0.762 0.191

8000 DNF 0.248 0.232 NA NA 0.935 0.234

16000 DNF 0.384 0.392 NA NA 1.021 0.255

Figure 6: Select top query runtime results in milliseconds

 As was stated in the previous chapter, this was the series of tests that had

completely failed in the MySQL server past selecting the top 2,000 elements. Again, I

believe this was due to an issue with available system memory that was allocated to the

server that could not be changed. From what can be gathered from the first two results

however, it ran the exact same runtime as the other two databases in the first query, and it

ran faster than the other two queries in the second query. As was the case in the last set of

query tests, this database ran its queries in about linear time.

 Fortunately, the MSSQL server did not suffer the same issues as the MySQL

server, and as such was able to complete the series of tests without issue. The runtimes of

the sequential database seemed to be about on par with the runtimes for the parallel

database. They seemed to go back and forth on which one ran faster. Much like the

17

MySQL server, these two databases also run in about linear time. This would make it

appear as though these types of queries when executed on a database do not experience a

very massive impact on performance when it is being run on a parallel database, or it is

being run on a sequential database.

 This would imply that this set of queries is implicitly sequential, as each database

must gather the same amount of data by traversing the database. Both the speed up and

efficiency of the parallel MSSQL database and the sequential database suggest this is the

case as well. The average speed up for this comparison was at 1.014, and the efficiency

of this comparison was about 0.254. With these two metrics in mind, both the parallel and

sequential MSSQL databases have virtually the same performance, and runtime, when it

completes this particular set of queries.

 Once this data was found, two surveys over the parallel and sequential databases

were also completed to check for data consistency and protection, as to make sure no data

was lost during the inserting process for the parallel database. The first survey confirmed

that both databases were identical and contained the exact same data in the same order.

This meant that, at the least, the parallel database was just as consistent as the sequential

database when it came to data consistency, and how MSSQL processes large inserts of

data. The next survey was the comparison between the parallel database, and the original

queries that were performed on it. Just like the previous survey, it yielded that both the

original queries and the database were consistent, with no missing data. With this

knowledge, it is safe to say that the parallel database, is just as consistent and can protect

data just as well as a sequential database written in MSSQL.

18

 As to whether this makes it seem better to use a parallel database over a

sequential database, this series of tests further proves that a parallel database does is not a

better option to the sequential database. There is next to no performance difference

between the two different databases, and in some cases the parallelism hurt the

performance of the query. In the few cases that the MySQL was able to run the tests, it

ran faster the parallel database entirely, even with the memory issues as seen in its

inability to fully finish this series of tests.

Delete Top Query Results

Delete Top Query Runtimes and Efficiency Results

 MySQL

4 Core

MSSQL

1 Core

MSSQL

MySQL

Speed

up

MySQL

Efficiency

MSSQL

Speed

up

MSSQL

Efficiency

1000 33.1 6.2 2.5 5.339 1.335 0.403 0.101

2000 54.8 9.4 5.2 5.83 1.457 0.553 0.138

4000 104.8 16 6.5 6.55 1.638 0.406 0.102

8000 223.8 29.7 16.8 7.535 1.884 0.566 0.141

16000 421.5 125.3 43.2 3.427 0.857 0.345 0.086

Figure 7: Delete top query runtime results in milliseconds

 After the previous tests failures for large select top values, I had feared that the

MySQL server would fail the same way again for the final set of tests, with the delete top

queries. However, it was able to fully complete these series of tests, but at quite the

runtime cost. It ran the slowest out of the three databases and had the slowest set of

19

runtimes for the entire series of tests. It appears that MySQL is not properly optimized for

the delete top functionality in its servers, and as such takes the longest to perform the

query.

 Where the MySQL server fails is where the MSSQL succeeds. The sequential

database performs the delete top query extremely fast. The runtime for each query is

about on par with the other series of tests. It also has the shortest runtime at each query

amount when compared to the other two databases. Like the previous series of tests, this

seems to indicate that the delete top function is also implicitly sequential, since it must go

through the set number of elements within the database to delete from the database.

 The parallel MSSQL server runs the second fastest out of the three databases.

Unlike the previous series of tests however, it does run much slower than its sequential

counterpart, where before it was either faster, or about the same runtime. As was stated

previously, this seems to be because the query is implicitly sequential. The reason it has

caused the database to be much slower this time is because the work required to make

each processor work together takes more time then just processing the data sequentially.

 If just comparing the MySQL server and the parallel MSSQL, in this case, the

parallel database is very much worth using over the sequential database. The average

speed up being about 5.736 and the average efficiency being about 1.434. However,

when considering the likelihood of the MySQL server having an issue with optimizing

this query, and the sequential MSSQL database also having faster runtimes then the

MySQL server, this data does not determine much in the way of determining the benefits

of using the parallel database. The comparison between the sequential and parallel

MSSQL databases is, however. The average speedup was about 0.455 and the average

20

efficiency was at about 0.114. In this case, using parallelism was simply detrimental to

the database performing each query that was required of it.

 In the case of the final test, using a parallel database would certainly not be

preferred. Parallelism actively made the query have a worse runtime then if it was simply

using a sequential method. It also was not making good use of the four processors, since

it had such a low efficiency compared to the sequential database. Now that the three

series of tests have been completed, the next chapter will discuss the final verdict on

using a parallel database over a sequential database.

21

CHAPTER VI

CONCLUSION

 Over the course of this project, a lot has been accomplished. Three databases were

created, two using MSSQL, and one using MySQL. An in-depth analysis was performed

of how each database handles queries, and the performance of each. Comparisons of each

were drawn, as were the weaknesses and strengths of each. With all this information, the

original questions that sparked this project can now be answered. Does the benefit of

having a parallel database outweigh its drawbacks, and can a parallel database be just as

consistent and protect its data as much as a sequential database?

 To the second question the answer was yes. Through testing it was shown that the

parallel database created in this project was just as consistent as a sequential database. It

was also shown that the parallel database was able to protect the data within its queries as

well. As for whether a parallel database should be used over a sequential database, the

answer is no. Through testing it was shown that a lot of database operations are typically

implicitly sequential and using a parallel database either minimally assisted in speeding

up the process of executing the queries as was the case in both the insert and select top

series of query tests, or it actively slowed it down, in the case of the delete top series of

query tests. Overall, it took a lot of work to get the parallel database working within

MSSMS, and for this work there were very minimal effects on the performance of the

database when compared to the sequential database.

22

 While this project may have not exactly resulted in exactly what I expected from

the parallel database, it has been a very insightful experience. I have learned a great deal

about operating MSSMS to manage a server, and a lot of the more advanced features

within MSSQL to perform the queries and operations necessary for parallel processing. It

fascinated me a lot more than I expected it to with its intricacies, and in the future, I plan

to continue working on personal projects using this system and learning as much about it

as I can. I can also begin experimenting with other parallel technologies, such as PLINQ,

a database query system designed by Microsoft to allow for more intricate control over

parallel processed data within a database.

23

BIBLIOGRAPHY

Porter, J. Ontman, A. (2020). Importing Relationships into a Running Graph Database
Using Parallel Processing. Retrieved from 2005.04093.pdf (arxiv.org).

Ji, Y. Chai, Y. Zhou, X. Ren, L. Qin, Y. (2020). Smart Intra-query Fault Tolerance for
Massive Parallel Processing Databases. Data Science and Engineering. 5(1), 65-
79.

Daeng Bani, FC. Suharjito. Diana. Girsang, AS. (2018). Implementation of Database
Massively Parallel Processing System to Build Scalability on Process Data
Warehouse. Procedia Computer Science. 135, 68-79.

Roukh, A. Bellatreche, L. Tziritas, N. Ordonez, C. (14/12/2016). Energy-Aware Query
Processing on a Parallel Database Cluster Node. Algorithms and Architectures
for Parallel Processing. 10048, 260-269.

Thakore, AK. Su, SYW. Lam, HX. (1995). Algorithms for asynchronous parallel
processing of object-oriented databases. IEEE Transactions on Knowledge and
Data Engineering. 7(3), 487-504.

Ivanova, EV. Sokolinsky, LB. (2017). Parallel processing of very large databases using
distributed column indexes. Programming and Computer Software, 43(3), 131-
144.

Rabeler, C. (01/28/2022). What is SQL Server Management Studio (SSMS)?. Retrieved
from SQL Server Management Studio (SSMS) - SQL Server Management Studio
(SSMS) | Microsoft Docs.

