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ABSTRACT

In order for an electrical network to be printed on a flat surface without changing

the network’s input or output, it is important to consider if any wires will cross and

if this problem can be avoided. If a circular network can be printed so that no wires

cross, the network is said to be circular planar. In this paper, we identify a number

of wiring patterns that make circular planarity impossible. We find exactly 3 wiring

patterns using circular pairs with sets of two nodes, and we find exactly 78 wiring

patterns using circular pairs with sets of three nodes.
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CHAPTER I

INTRODUCTION

Electrical networks with inputs and outputs seem to be everywhere in the

modern world. From tiny integrated circuits in smartphones to large regional power

grids, they vary greatly in size and application.

In some cases, an electrical network can be represented mathematically as a

circular graph, or circular network, where wires are represented by edges and various

components are represented by nodes. Edge weights represent the conductance of the

wire, and if the wire has no conductance, the edge is not drawn. Figure 1.1 illustrates

an example of a circular network.

In some contexts, one may want to know if such an electrical network can

be printed on a flat surface without changing the input or output of the network. In

order for a network to be printed in this way, it is important to consider if any wires

will cross and if this problem can be avoided. If the circular network can be printed

so that no wires cross, the network is said to be circular planar. In this paper, we

identify a number of wiring patterns that make this task impossible.

We reference the work of Curtis and Morrow in their book, Inverse Problems

for Electrical Networks. In it, they discuss solutions to the problem of reconstructing

an electrical network given its response matrix, M , and its boundary nodes. We

1



Figure 1.1: Circular network N, an electrical network, contains twelve boundary

nodes, labeled 1 through 12, and two interior nodes, labeled 13 and 14. Wires are

labeled with their conductances.

also reference the work of Dörfler and Bullo in “Kron Reduction of Graphs with

Applications to Electrical Networks”, in which they discuss the usefulness of applying

the Kron reduction method to this area.
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CHAPTER II

PRELIMINARIES

The following terms are defined in the book Inverse Problems For Electrical

Networks by Curtis and Morrow [1].

2.1 Circular Network

A circular network consists of a collection of ordered nodes with connecting

edges. Some nodes are arranged on a circle defined as a boundary, and are called

boundary nodes; the rest are called interior nodes. Edges have values associated with

them. In an electrical network, an edge value represents a wire’s conductance and

will be positive (or zero, if there is no conductance on the wire). In the event that

an edge value is zero, we will not draw that edge. Figure 1.1 shows an example.

2.2 Laplacian Matrix

Let N be a circular network with m nodes. The Laplacian matrix, L(N), is an

m×m symmetric matrix as follows:

• Off-diagonal entry Lij is the conductance of the edge [i, j] or 0 if there is no

edge between nodes i and j.

3



• Diagonal entry Lii is the negative value which makes the row and column both

sum to zero, that is, Lii is the negative of the sum of conductances of the edges

adjacent to node i.

2.3 Response Matrix

Let N be a circular network with m nodes and n boundary nodes. The Response

matrix, M(N), is an n× n matrix defined as

M = A−BC -1BT

where:

• A is the n× n submatrix corresponding to the boundary nodes,

• B is the n× (m− n) submatrix corresponding to edges between the boundary

nodes and the interior nodes, and

• C is the (m− n) × (m− n) submatrix corresponding to the interior nodes.

Note that if N has no interior nodes, then L(N) = M(N).

2.4 Network Equivalence

Let N and N ′ be circular networks. If M(N) = M(N ′), then the two networks

are said to be equivalent. This is denoted as N ∼= N ′ and is easily seen to be an

equivalence relation.

4



2.4.1 Example

Let N be a circular network with four boundary nodes and no interior nodes,

and let N ′ be a circular network with four boundary nodes and one interior node, as

shown in Figure 2.1.

Figure 2.1: Network N with four nodes and conductances of 1, and Network N ′ with

fives nodes and conductances of 4.

Then we have:

L(N) = M(N) =



−3 1 1 1

1 −3 1 1

1 1 −3 1

1 1 1 −3


Thus, the response matrix is easily obtained for N . Turning to N ′, we first

5



find the Laplacian matrix:

L(N ′) =



−4 0 0 0 4

0 −4 0 0 4

0 0 −4 0 4

0 0 0 −4 4

4 4 4 4 −16


From this, we calculate the response matrix:

M(N ′) =



−4 0 0 0

0 −4 0 0

0 0 −4 0

0 0 0 −4


−



4

4

4

4


(
−1

16

) [
4 4 4 4

]

Therefore,

M(N ′) =



−3 1 1 1

1 −3 1 1

1 1 −3 1

1 1 1 −3



Thus, we can observe that M(N) = M(N ′) and the two networks are equiv-

alent. It is interesting to note that N ′ does not have any edges crossing and visually

appears to be planar. However, N does have edges that cross and visually appears

6



to be nonplanar. Without finding the response matrices, one could not predict that

these two networks are equivalent.

2.5 Circular Planar

For an equivalence class of circular networks, if any representative circular net-

work can be drawn inside the boundary circle with no edges crossing, the equivalence

class of circular networks is said to be circular planar.

2.6 Circular Pair

A circular pair is a pair of ordered lists of boundary nodes of network N

(p1, p2, ..., pk; q1, q2, ..., qk)

such that combining the two lists as

(p1, p2, ..., pk, qk, ..., q2, q1)

produces a list that respects the circular order, i.e., goes around the circle in a clock-

wise direction only once. We denote [p1, p2, ..., pk] as P and [q1, q2, ..., qk] as Q.

2.6.1 Example

In Figure 2.2, N is a circular network with twelve boundary nodes. At left is the

original network, and at right, we have selected the circular pair (2, 3, 6, 7; 1, 12, 11, 10).

7



Figure 2.2: Circular Network N with a circular pair of size k = 4 selected. For clarity,

each set of nodes in the pair is circled with a dashed line.

2.7 Circular Minor

The circular submatrix for pair (P ;Q) is the submatrix of M(N) using rows

p1, ..., pk and columns q1, ..., qk, in that order. The circular minor for (P ;Q) is the

determinant of that submatrix.

2.7.1 Example

In Figure 2.2, with circular pair (2, 3, 6, 7; 1, 12, 11, 10), the corresponding

circular submatrix is:

8





0 3 0 0

4 0 0 0

2 0 0 1

5 0 0 0



Then the circular minor for this circular pair is the determinant of this matrix,

which is zero.

Theorem 2.7.1 A response matrix M(N) for an electrical network N has all non-

negative circular minors if and only if N is circular planar [2].

2.8 Bipartite Graph

A graph N is said to be bipartite if the set of nodes V may be partitioned into

two subsets X and Y such that each edge of N contains one node in X and one node

in Y . Figure 2.3 shows an example of a bipartite network.

2.9 Complete Bipartite Graph

A bipartite graph in which every node of one subset shares an edge with

every node of the other subset is said to be a complete bipartite graph. A complete

bipartite graph is notated as Kr,s, where one subset contains r nodes and the other

9



Figure 2.3: In this bipartite network, nodes 2, 3, and 4 share edges only with nodes

1, 5, 6, and 7.

subset contains s nodes. Figure 2.4 shows an example of a complete bipartite network.

2.10 Kron Reduction of a Network

The Kron reduction of a circular network N is a network K(N) whose Laplacian

matrix is M(N). Therefore, K(N) ∼= N and in fact, K(N) is the only member of

the equivalence class of N that has no interior nodes. To construct K(N), use the

boundary nodes from N , but remove the interior nodes. Place an edge between two

boundary nodes if there is a path between them that does not include any other

10



Figure 2.4: K3,4

boundary nodes. Edge conductances can be obtained from M(N) [3]. In Figure 2.1,

N = K(N ′).

11



CHAPTER III

OBSTRUCTIONS TO PLANARITY

We now consider circular networks where equivalence to circular planarity is

impossible. Recall that a network is circular planar if and only if all circular minors

are nonnegative. Thus, a network is circular non-planar if there exists a negative

circular minor associated with that network. If applied to electrical networks, a

network calculated to be circular non-planar would be impossible to construct in two

dimensions without wires in the network crossing. We will identify some of these

obstructive wiring patterns.

Recall that the Kron reduction of any circular network can be found, and

the Kron reduction of a network is equivalent to the network (that is, their response

matrices are equal). Because of this, when looking for obstructions to planarity, we

will consider only the Kron reductions of networks. We can consider networks with

no interior nodes and be assured that our results would apply to their equivalent

networks containing interior nodes. When considering a circular network N with

no interior nodes in the calculations that follow, the process is made easier since

L(N) = M(N).

12



3.1 Circular Pairs of Size k=1

Trivially, we can consider the case where only one node is chosen for P and one

node is chosen for Q from a circular network N . Then, there is only one element in

the submatrix of M(N), representing the conductance of the edge between the two

nodes (or 0 if there is no edge there). Since we have a matrix containing only one

element and the element is greater than or equal to 0, the determinant is nonnegative.

Thus, the circular minor could never be negative, and we cannot find an obstructive

wiring configuration.

3.2 Circular Pairs of Size k=2

Next, let us consider the case where the circular pair contains sets of two nodes.

Suppose we have a circular network N containing four or more boundary nodes. Let

us consider a complete graph with four nodes as shown in Figure 3.1. Let us select

a circular pair (P ;Q) of size k = 2. Let us arbitrarily select the circular pair to be

(2, 3; 1, 4). Then the resulting circular submatrix is

a b

c d

.

Calculating the determinant of this matrix yields the expression ad− bc, and

we seek to make this expression negative for all positive edge values. There are three

ways to guarantee that this expression is always negative: a = 0, d = 0, or a = d = 0.

Thus, there are three configurations that give a negative circular minor.

Note that the edge between node 2 and node 3 and the edge between node 1

and node 4, with conductances of f and e, respectively, have no effect on the circular

13



Figure 3.1: A complete circular network with four nodes and circular pair selected.

Edge conductance values are indicated by variables a through f .

minor calculation, since only edge values for edges from a node in one set to a node

in the other set are used to form the circular submatrix. Therefore, we can limit our

focus to the complete bipartite network such that the circular pair gives the partition

of the nodes, which we will call N2,2. This is network shown in Figure 3.2.

With the unnecessary edges omitted, our three configurations are subnet-

works of N2,2. We will refer to these as “obstructive networks” and display them in

Figure 3.3. Notice that the first and third pictures are reflections of one another, so

there are two unique obstructive networks up to reflection.

Definition 3.2.1 A pair-induced subnetwork of a network N for a circular pair

(P ;Q) of nodes is the subnetwork induced by (P ;Q), minus edges that have both

endpoints in P or both in Q.

14



Figure 3.2: N2,2 where edges are assigned variable conductances.

Figure 3.3: The three obstructive networks with circular pair of size k=2.

15



From this definition and the preceding discussion, we can conclude the fol-

lowing theorem.

Theorem 3.2.2 These 3 obstructive networks in Figure 3.3 are the only subnetworks

of N2,2 that are not circular planar for all positive conductance values of their edges.

In fact, for any size network N , if there exists a pair-induced subnetwork of N (with

nodes renumbered to match the pair (2, 3; 1, 4)) that is equivalent to one of these 3

obstructive networks, then N is not circular planar.

3.3 Circular Pairs of Size k=3

Let us now consider circular pairs containing sets of three nodes. As in the case

of circular pairs of size k = 2, we will limit our consideration to a complete bipartite

circular network, this time with six nodes which we will label as 1 through 6. Let

us call this network N3,3 and label the nodes as shown in Figure 3.4. We arbitrarily

select a circular pair to be the two sets of three nodes that are the partition of the

nodes, i.e., (2, 3, 4; 1, 6, 5). We seek to find subnetworks of N3,3 such that the circular

minor is negative for all conductances. We refer to these as “obstructive networks”.

To begin, we assign variables a through i for the conductances of the nine

edges, as shown in Figure 3.5.

16



Figure 3.4: N3,3 is a complete bipartite circular network with six nodes.

Then the resulting circular submatrix will be:
a b c

d e f

g h i



The circular minor is equal to the determinant of this matrix, and we seek

to make it negative. This can be expressed as:

aei + bfg + cdh− (afh + bdi + ceg) < 0

We seek to make this expression true for all conductance values. Thus, each

variable a through i could either equal 0 (in which case, the wire is omitted), or be

any positive value. Careful calculation by hand reveals 78 unique solutions. By first

17



Figure 3.5: N3,3 where edges are assigned variable conductances.

selecting subsets of a...i with three variables as the only positives- [a, f, h], [b, d, i], and

[c, e, g]- and setting all other variables equal to 0, we find the three subnetworks with

the fewest edges. We can strategically add to each of these subsets to find additional

subnetworks.

To verify that no additional subsets were missed, we note that if the determi-

nant is negative for all positive values of the conductances in one such subset, then it

is negative when those same conductances are all 1 (and the others still 0). Thus, let

us assume that the conductance of a wire can only have a value of 1, and otherwise

the variable will be equal to 0. This can be calculated using Microsoft Excel, where

all 512 possible combinations of zeros and ones for a...i are listed and the determinant

is calculated for each.

Appendix A displays these results, where 87 cases are found to have a negative

18



Figure 3.6: Some of the 78 possible obstructive networks which are subgraphs of N3,3.

determinant. Of these 87 cases, 9 do not guarantee the determinant is negative for

all positive values. Removing these cases, we are left with our 78 cases. We can then

draw the obstructive network corresponding to each case. Several of these are shown

in Figure 3.6.

It is notable that each of the 78 obstructive networks contains at least one of

the obstructive networks in Figure 3.3. For example, obstructive network D in Figure

3.6 contains two of these obstructive networks. This is illustrated in Figure 3.7.

It is also important to note that some of these 78 networks are reflections of

19



Figure 3.7: An obstructive network containing two smaller obstructive subnetworks.

one another. We consider only the reflections of a network through the line which

divides the nodes into the two parts 2, 3, 4 and 1, 6, 5, or the line which passes through

nodes 3 and 6. Algebraically, this occurs by reflecting the elements of the associated

matrix across the main diagonal of the matrix, or by interchanging rows 1 and 3

and interchanging columns 1 and 3. Both of these algebraic methods preserve the

determinant of the matrix.

In considering these particular reflections, we find that each network contains

either zero, one, or two symmetries. For example, obstructive networks B and D in

Figure 3.6 are reflections of one another across the line that passes through nodes 3

and 6. On the other hand, networks A and F already contain two symmetries.

When classifying the obstructive networks based on their number of symme-

tries, we find that there are two that contain two symmetries, twelve that contain one

symmetry, and thirteen that contain no symmetries. Therefore, there are 27 unique

20



networks up to reflection. These are displayed in Appendix B. Each of the thirteen

networks with no symmetries can be reflected twice to generate four total networks,

and each of the twelve networks with one symmetry can be reflected once to generate

two total networks. Adding to this the two networks with two symmetries, we can

obtain all 78 obstructive networks from these 27.

Our findings can be summarized as follows in Theorem 3.3.1.

Theorem 3.3.1 These 78 obstructive networks are the only subnetworks of N3,3 that

are not circular planar for all positive conductance values of their edges. In fact,

for any size network N , if there exists a pair-induced subnetwork of N (with nodes

renumbered to match the pair (2, 3, 4; 1, 6, 5)) that is equivalent to one of these 78

obstructive networks, then N is not circular planar.

Theorem 3.3.2 Let N be a network of any size. If a pair-induced subnetwork of N

(with nodes renumbered to match the pair (2, 3, 4; 1, 6, 5)) is equivalent to one of these

78 obstructive networks, then there is a size k = 2 circular pair (R;S) such that the

pair-induced subnetwork of N (with nodes renumbered to match the pair (2, 3; 1, 4))

is equivalent to one of the three obstructive networks in Theorem 3.2.2.

This theorem can be verified by inspecting the pictures in Appendix B. The

converse of this theorem is not true, as demonstrated in the following example.

3.3.1 Example

Let us consider obstructive network F from Figure 3.6. Notice that this

network contains at least one of the obstructive networks from Theorem 3.2.2. Now
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Figure 3.8: Two networks each containing a k = 2 obstructive network from Theorem

3.2.2.

let us consider another subnetwork of N3,3 that is very similar to F and call this new

network G. These two networks are shown in Figure 3.8.

Observe that the only difference between the two networks is the presence of

the edge with conductance g in network G. Notice that, like F , G also contains at

least one of the obstructive network patterns in Theorem 3.2.2. However, if we select

the circular pair (2, 3, 4; 1, 6, 5) and find the determinant for the associated circular

minor, we have:

∣∣∣∣∣∣∣∣∣∣∣∣

a b 0

d 0 f

g h i

∣∣∣∣∣∣∣∣∣∣∣∣
= bfg − (afh + bdi)
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This determinant is not guaranteed to be negative for all conductance values.

Thus, it is not equivalent to one of the 78 networks from Theorem 3.3.1.
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CHAPTER IV

AREAS FOR FURTHER EXPLORATION

The results presented in the previous chapter raise additional questions for

further research. While we identified obstructive networks by using circular pairs of

size k = 1, k = 2, and k = 3, this process could be extended to circular pairs of larger

sizes to find additional obstructive networks with more boundary nodes.

Also, Theorem 3.3.2 leads to the question of whether the 78 obstructive net-

works from Theorem 3.3.1 are also induced subgraphs of obstructive networks found

using circular pairs of size k = 4. Do obstructive networks with more nodes always

include obstructive networks with fewer nodes as induced subgraphs, as specified in

Theorem 3.3.2? What similarities can we observe across all obstructive networks?

A third topic to consider is that of the counts of the obstructive networks

for each circular pair size k. From our results in Chapter 3, we have the sequence

(0, 3, 78, ...). This sequence is not found in the Online Encyclopedia of Integer Se-

quences (OEIS). Perhaps by calculating additional numbers in this sequence, a for-

mula could be obtained to find the count for any circular pair of size n. It is also

interesting to consider finding additional values for the sequence of unique obstructive

networks up to reflection, for which we have (0, 2, 27) so far. Further terms would

need to be calculated to determine if this sequence is found in the OEIS.
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Also notable is that the count of (0, 1) n × n matrices with nonzero de-

terminants is a hard unsolved problem. From Appendix A, this count is 174 for

3 × 3 matrices, with half being positive and half being negative. In the OEIS, Entry

A055165 gives the number of invertible n × n matrices with entries equal to 0 or 1

[4]. If a formula was found for the sequence (0, 3, 78, ...), it would give a lower bound

for the the hard unsolved problem.
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APPENDIX A

EXCEL CALCULATIONS

The following consists of 512 rows of all possible combinations of zeros and

ones for nine variables, a through i. The combinations were obtained by converting

the number in the leftmost column to binary form. Then, each digit was extracted

into a separate column corresponding to a variable. Finally, the determinant was

calculated and negative determinants were flagged when substituting the values into

the following matrix:


a b c

d e f

g h i


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Number Binary a b c d e f g h i Determinant Negative Determinants
0 000000000 0 0 0 0 0 0 0 0 0 0
1 000000001 0 0 0 0 0 0 0 0 1 0
2 000000010 0 0 0 0 0 0 0 1 0 0
3 000000011 0 0 0 0 0 0 0 1 1 0
4 000000100 0 0 0 0 0 0 1 0 0 0
5 000000101 0 0 0 0 0 0 1 0 1 0
6 000000110 0 0 0 0 0 0 1 1 0 0
7 000000111 0 0 0 0 0 0 1 1 1 0
8 000001000 0 0 0 0 0 1 0 0 0 0
9 000001001 0 0 0 0 0 1 0 0 1 0

10 000001010 0 0 0 0 0 1 0 1 0 0
11 000001011 0 0 0 0 0 1 0 1 1 0
12 000001100 0 0 0 0 0 1 1 0 0 0
13 000001101 0 0 0 0 0 1 1 0 1 0
14 000001110 0 0 0 0 0 1 1 1 0 0
15 000001111 0 0 0 0 0 1 1 1 1 0
16 000010000 0 0 0 0 1 0 0 0 0 0
17 000010001 0 0 0 0 1 0 0 0 1 0
18 000010010 0 0 0 0 1 0 0 1 0 0
19 000010011 0 0 0 0 1 0 0 1 1 0
20 000010100 0 0 0 0 1 0 1 0 0 0
21 000010101 0 0 0 0 1 0 1 0 1 0
22 000010110 0 0 0 0 1 0 1 1 0 0
23 000010111 0 0 0 0 1 0 1 1 1 0
24 000011000 0 0 0 0 1 1 0 0 0 0
25 000011001 0 0 0 0 1 1 0 0 1 0
26 000011010 0 0 0 0 1 1 0 1 0 0
27 000011011 0 0 0 0 1 1 0 1 1 0
28 000011100 0 0 0 0 1 1 1 0 0 0
29 000011101 0 0 0 0 1 1 1 0 1 0
30 000011110 0 0 0 0 1 1 1 1 0 0
31 000011111 0 0 0 0 1 1 1 1 1 0
32 000100000 0 0 0 1 0 0 0 0 0 0
33 000100001 0 0 0 1 0 0 0 0 1 0
34 000100010 0 0 0 1 0 0 0 1 0 0
35 000100011 0 0 0 1 0 0 0 1 1 0
36 000100100 0 0 0 1 0 0 1 0 0 0
37 000100101 0 0 0 1 0 0 1 0 1 0
38 000100110 0 0 0 1 0 0 1 1 0 0
39 000100111 0 0 0 1 0 0 1 1 1 0
40 000101000 0 0 0 1 0 1 0 0 0 0
41 000101001 0 0 0 1 0 1 0 0 1 0
42 000101010 0 0 0 1 0 1 0 1 0 0
43 000101011 0 0 0 1 0 1 0 1 1 0
44 000101100 0 0 0 1 0 1 1 0 0 0
45 000101101 0 0 0 1 0 1 1 0 1 0
46 000101110 0 0 0 1 0 1 1 1 0 0
47 000101111 0 0 0 1 0 1 1 1 1 0



48 000110000 0 0 0 1 1 0 0 0 0 0
49 000110001 0 0 0 1 1 0 0 0 1 0
50 000110010 0 0 0 1 1 0 0 1 0 0
51 000110011 0 0 0 1 1 0 0 1 1 0
52 000110100 0 0 0 1 1 0 1 0 0 0
53 000110101 0 0 0 1 1 0 1 0 1 0
54 000110110 0 0 0 1 1 0 1 1 0 0
55 000110111 0 0 0 1 1 0 1 1 1 0
56 000111000 0 0 0 1 1 1 0 0 0 0
57 000111001 0 0 0 1 1 1 0 0 1 0
58 000111010 0 0 0 1 1 1 0 1 0 0
59 000111011 0 0 0 1 1 1 0 1 1 0
60 000111100 0 0 0 1 1 1 1 0 0 0
61 000111101 0 0 0 1 1 1 1 0 1 0
62 000111110 0 0 0 1 1 1 1 1 0 0
63 000111111 0 0 0 1 1 1 1 1 1 0
64 001000000 0 0 1 0 0 0 0 0 0 0
65 001000001 0 0 1 0 0 0 0 0 1 0
66 001000010 0 0 1 0 0 0 0 1 0 0
67 001000011 0 0 1 0 0 0 0 1 1 0
68 001000100 0 0 1 0 0 0 1 0 0 0
69 001000101 0 0 1 0 0 0 1 0 1 0
70 001000110 0 0 1 0 0 0 1 1 0 0
71 001000111 0 0 1 0 0 0 1 1 1 0
72 001001000 0 0 1 0 0 1 0 0 0 0
73 001001001 0 0 1 0 0 1 0 0 1 0
74 001001010 0 0 1 0 0 1 0 1 0 0
75 001001011 0 0 1 0 0 1 0 1 1 0
76 001001100 0 0 1 0 0 1 1 0 0 0
77 001001101 0 0 1 0 0 1 1 0 1 0
78 001001110 0 0 1 0 0 1 1 1 0 0
79 001001111 0 0 1 0 0 1 1 1 1 0
80 001010000 0 0 1 0 1 0 0 0 0 0
81 001010001 0 0 1 0 1 0 0 0 1 0
82 001010010 0 0 1 0 1 0 0 1 0 0
83 001010011 0 0 1 0 1 0 0 1 1 0
84 001010100 0 0 1 0 1 0 1 0 0 -1 Neg
85 001010101 0 0 1 0 1 0 1 0 1 -1 Neg
86 001010110 0 0 1 0 1 0 1 1 0 -1 Neg
87 001010111 0 0 1 0 1 0 1 1 1 -1 Neg
88 001011000 0 0 1 0 1 1 0 0 0 0
89 001011001 0 0 1 0 1 1 0 0 1 0
90 001011010 0 0 1 0 1 1 0 1 0 0
91 001011011 0 0 1 0 1 1 0 1 1 0
92 001011100 0 0 1 0 1 1 1 0 0 -1 Neg
93 001011101 0 0 1 0 1 1 1 0 1 -1 Neg
94 001011110 0 0 1 0 1 1 1 1 0 -1 Neg
95 001011111 0 0 1 0 1 1 1 1 1 -1 Neg
96 001100000 0 0 1 1 0 0 0 0 0 0



97 001100001 0 0 1 1 0 0 0 0 1 0
98 001100010 0 0 1 1 0 0 0 1 0 1
99 001100011 0 0 1 1 0 0 0 1 1 1

100 001100100 0 0 1 1 0 0 1 0 0 0
101 001100101 0 0 1 1 0 0 1 0 1 0
102 001100110 0 0 1 1 0 0 1 1 0 1
103 001100111 0 0 1 1 0 0 1 1 1 1
104 001101000 0 0 1 1 0 1 0 0 0 0
105 001101001 0 0 1 1 0 1 0 0 1 0
106 001101010 0 0 1 1 0 1 0 1 0 1
107 001101011 0 0 1 1 0 1 0 1 1 1
108 001101100 0 0 1 1 0 1 1 0 0 0
109 001101101 0 0 1 1 0 1 1 0 1 0
110 001101110 0 0 1 1 0 1 1 1 0 1
111 001101111 0 0 1 1 0 1 1 1 1 1
112 001110000 0 0 1 1 1 0 0 0 0 0
113 001110001 0 0 1 1 1 0 0 0 1 0
114 001110010 0 0 1 1 1 0 0 1 0 1
115 001110011 0 0 1 1 1 0 0 1 1 1
116 001110100 0 0 1 1 1 0 1 0 0 -1 Neg
117 001110101 0 0 1 1 1 0 1 0 1 -1 Neg
118 001110110 0 0 1 1 1 0 1 1 0 0
119 001110111 0 0 1 1 1 0 1 1 1 0
120 001111000 0 0 1 1 1 1 0 0 0 0
121 001111001 0 0 1 1 1 1 0 0 1 0
122 001111010 0 0 1 1 1 1 0 1 0 1
123 001111011 0 0 1 1 1 1 0 1 1 1
124 001111100 0 0 1 1 1 1 1 0 0 -1 Neg
125 001111101 0 0 1 1 1 1 1 0 1 -1 Neg
126 001111110 0 0 1 1 1 1 1 1 0 0
127 001111111 0 0 1 1 1 1 1 1 1 0
128 010000000 0 1 0 0 0 0 0 0 0 0
129 010000001 0 1 0 0 0 0 0 0 1 0
130 010000010 0 1 0 0 0 0 0 1 0 0
131 010000011 0 1 0 0 0 0 0 1 1 0
132 010000100 0 1 0 0 0 0 1 0 0 0
133 010000101 0 1 0 0 0 0 1 0 1 0
134 010000110 0 1 0 0 0 0 1 1 0 0
135 010000111 0 1 0 0 0 0 1 1 1 0
136 010001000 0 1 0 0 0 1 0 0 0 0
137 010001001 0 1 0 0 0 1 0 0 1 0
138 010001010 0 1 0 0 0 1 0 1 0 0
139 010001011 0 1 0 0 0 1 0 1 1 0
140 010001100 0 1 0 0 0 1 1 0 0 1
141 010001101 0 1 0 0 0 1 1 0 1 1
142 010001110 0 1 0 0 0 1 1 1 0 1
143 010001111 0 1 0 0 0 1 1 1 1 1
144 010010000 0 1 0 0 1 0 0 0 0 0
145 010010001 0 1 0 0 1 0 0 0 1 0



146 010010010 0 1 0 0 1 0 0 1 0 0
147 010010011 0 1 0 0 1 0 0 1 1 0
148 010010100 0 1 0 0 1 0 1 0 0 0
149 010010101 0 1 0 0 1 0 1 0 1 0
150 010010110 0 1 0 0 1 0 1 1 0 0
151 010010111 0 1 0 0 1 0 1 1 1 0
152 010011000 0 1 0 0 1 1 0 0 0 0
153 010011001 0 1 0 0 1 1 0 0 1 0
154 010011010 0 1 0 0 1 1 0 1 0 0
155 010011011 0 1 0 0 1 1 0 1 1 0
156 010011100 0 1 0 0 1 1 1 0 0 1
157 010011101 0 1 0 0 1 1 1 0 1 1
158 010011110 0 1 0 0 1 1 1 1 0 1
159 010011111 0 1 0 0 1 1 1 1 1 1
160 010100000 0 1 0 1 0 0 0 0 0 0
161 010100001 0 1 0 1 0 0 0 0 1 -1 Neg
162 010100010 0 1 0 1 0 0 0 1 0 0
163 010100011 0 1 0 1 0 0 0 1 1 -1 Neg
164 010100100 0 1 0 1 0 0 1 0 0 0
165 010100101 0 1 0 1 0 0 1 0 1 -1 Neg
166 010100110 0 1 0 1 0 0 1 1 0 0
167 010100111 0 1 0 1 0 0 1 1 1 -1 Neg
168 010101000 0 1 0 1 0 1 0 0 0 0
169 010101001 0 1 0 1 0 1 0 0 1 -1 Neg
170 010101010 0 1 0 1 0 1 0 1 0 0
171 010101011 0 1 0 1 0 1 0 1 1 -1 Neg
172 010101100 0 1 0 1 0 1 1 0 0 1
173 010101101 0 1 0 1 0 1 1 0 1 0
174 010101110 0 1 0 1 0 1 1 1 0 1
175 010101111 0 1 0 1 0 1 1 1 1 0
176 010110000 0 1 0 1 1 0 0 0 0 0
177 010110001 0 1 0 1 1 0 0 0 1 -1 Neg
178 010110010 0 1 0 1 1 0 0 1 0 0
179 010110011 0 1 0 1 1 0 0 1 1 -1 Neg
180 010110100 0 1 0 1 1 0 1 0 0 0
181 010110101 0 1 0 1 1 0 1 0 1 -1 Neg
182 010110110 0 1 0 1 1 0 1 1 0 0
183 010110111 0 1 0 1 1 0 1 1 1 -1 Neg
184 010111000 0 1 0 1 1 1 0 0 0 0
185 010111001 0 1 0 1 1 1 0 0 1 -1 Neg
186 010111010 0 1 0 1 1 1 0 1 0 0
187 010111011 0 1 0 1 1 1 0 1 1 -1 Neg
188 010111100 0 1 0 1 1 1 1 0 0 1
189 010111101 0 1 0 1 1 1 1 0 1 0
190 010111110 0 1 0 1 1 1 1 1 0 1
191 010111111 0 1 0 1 1 1 1 1 1 0
192 011000000 0 1 1 0 0 0 0 0 0 0
193 011000001 0 1 1 0 0 0 0 0 1 0
194 011000010 0 1 1 0 0 0 0 1 0 0



195 011000011 0 1 1 0 0 0 0 1 1 0
196 011000100 0 1 1 0 0 0 1 0 0 0
197 011000101 0 1 1 0 0 0 1 0 1 0
198 011000110 0 1 1 0 0 0 1 1 0 0
199 011000111 0 1 1 0 0 0 1 1 1 0
200 011001000 0 1 1 0 0 1 0 0 0 0
201 011001001 0 1 1 0 0 1 0 0 1 0
202 011001010 0 1 1 0 0 1 0 1 0 0
203 011001011 0 1 1 0 0 1 0 1 1 0
204 011001100 0 1 1 0 0 1 1 0 0 1
205 011001101 0 1 1 0 0 1 1 0 1 1
206 011001110 0 1 1 0 0 1 1 1 0 1
207 011001111 0 1 1 0 0 1 1 1 1 1
208 011010000 0 1 1 0 1 0 0 0 0 0
209 011010001 0 1 1 0 1 0 0 0 1 0
210 011010010 0 1 1 0 1 0 0 1 0 0
211 011010011 0 1 1 0 1 0 0 1 1 0
212 011010100 0 1 1 0 1 0 1 0 0 -1 Neg
213 011010101 0 1 1 0 1 0 1 0 1 -1 Neg
214 011010110 0 1 1 0 1 0 1 1 0 -1 Neg
215 011010111 0 1 1 0 1 0 1 1 1 -1 Neg
216 011011000 0 1 1 0 1 1 0 0 0 0
217 011011001 0 1 1 0 1 1 0 0 1 0
218 011011010 0 1 1 0 1 1 0 1 0 0
219 011011011 0 1 1 0 1 1 0 1 1 0
220 011011100 0 1 1 0 1 1 1 0 0 0
221 011011101 0 1 1 0 1 1 1 0 1 0
222 011011110 0 1 1 0 1 1 1 1 0 0
223 011011111 0 1 1 0 1 1 1 1 1 0
224 011100000 0 1 1 1 0 0 0 0 0 0
225 011100001 0 1 1 1 0 0 0 0 1 -1 Neg
226 011100010 0 1 1 1 0 0 0 1 0 1
227 011100011 0 1 1 1 0 0 0 1 1 0
228 011100100 0 1 1 1 0 0 1 0 0 0
229 011100101 0 1 1 1 0 0 1 0 1 -1 Neg
230 011100110 0 1 1 1 0 0 1 1 0 1
231 011100111 0 1 1 1 0 0 1 1 1 0
232 011101000 0 1 1 1 0 1 0 0 0 0
233 011101001 0 1 1 1 0 1 0 0 1 -1 Neg
234 011101010 0 1 1 1 0 1 0 1 0 1
235 011101011 0 1 1 1 0 1 0 1 1 0
236 011101100 0 1 1 1 0 1 1 0 0 1
237 011101101 0 1 1 1 0 1 1 0 1 0
238 011101110 0 1 1 1 0 1 1 1 0 2
239 011101111 0 1 1 1 0 1 1 1 1 1
240 011110000 0 1 1 1 1 0 0 0 0 0
241 011110001 0 1 1 1 1 0 0 0 1 -1 Neg
242 011110010 0 1 1 1 1 0 0 1 0 1
243 011110011 0 1 1 1 1 0 0 1 1 0



244 011110100 0 1 1 1 1 0 1 0 0 -1 Neg
245 011110101 0 1 1 1 1 0 1 0 1 -2 Neg
246 011110110 0 1 1 1 1 0 1 1 0 0
247 011110111 0 1 1 1 1 0 1 1 1 -1 Neg
248 011111000 0 1 1 1 1 1 0 0 0 0
249 011111001 0 1 1 1 1 1 0 0 1 -1 Neg
250 011111010 0 1 1 1 1 1 0 1 0 1
251 011111011 0 1 1 1 1 1 0 1 1 0
252 011111100 0 1 1 1 1 1 1 0 0 0
253 011111101 0 1 1 1 1 1 1 0 1 -1 Neg
254 011111110 0 1 1 1 1 1 1 1 0 1
255 011111111 0 1 1 1 1 1 1 1 1 0
256 100000000 1 0 0 0 0 0 0 0 0 0
257 100000001 1 0 0 0 0 0 0 0 1 0
258 100000010 1 0 0 0 0 0 0 1 0 0
259 100000011 1 0 0 0 0 0 0 1 1 0
260 100000100 1 0 0 0 0 0 1 0 0 0
261 100000101 1 0 0 0 0 0 1 0 1 0
262 100000110 1 0 0 0 0 0 1 1 0 0
263 100000111 1 0 0 0 0 0 1 1 1 0
264 100001000 1 0 0 0 0 1 0 0 0 0
265 100001001 1 0 0 0 0 1 0 0 1 0
266 100001010 1 0 0 0 0 1 0 1 0 -1 Neg
267 100001011 1 0 0 0 0 1 0 1 1 -1 Neg
268 100001100 1 0 0 0 0 1 1 0 0 0
269 100001101 1 0 0 0 0 1 1 0 1 0
270 100001110 1 0 0 0 0 1 1 1 0 -1 Neg
271 100001111 1 0 0 0 0 1 1 1 1 -1 Neg
272 100010000 1 0 0 0 1 0 0 0 0 0
273 100010001 1 0 0 0 1 0 0 0 1 1
274 100010010 1 0 0 0 1 0 0 1 0 0
275 100010011 1 0 0 0 1 0 0 1 1 1
276 100010100 1 0 0 0 1 0 1 0 0 0
277 100010101 1 0 0 0 1 0 1 0 1 1
278 100010110 1 0 0 0 1 0 1 1 0 0
279 100010111 1 0 0 0 1 0 1 1 1 1
280 100011000 1 0 0 0 1 1 0 0 0 0
281 100011001 1 0 0 0 1 1 0 0 1 1
282 100011010 1 0 0 0 1 1 0 1 0 -1 Neg
283 100011011 1 0 0 0 1 1 0 1 1 0
284 100011100 1 0 0 0 1 1 1 0 0 0
285 100011101 1 0 0 0 1 1 1 0 1 1
286 100011110 1 0 0 0 1 1 1 1 0 -1 Neg
287 100011111 1 0 0 0 1 1 1 1 1 0
288 100100000 1 0 0 1 0 0 0 0 0 0
289 100100001 1 0 0 1 0 0 0 0 1 0
290 100100010 1 0 0 1 0 0 0 1 0 0
291 100100011 1 0 0 1 0 0 0 1 1 0
292 100100100 1 0 0 1 0 0 1 0 0 0



293 100100101 1 0 0 1 0 0 1 0 1 0
294 100100110 1 0 0 1 0 0 1 1 0 0
295 100100111 1 0 0 1 0 0 1 1 1 0
296 100101000 1 0 0 1 0 1 0 0 0 0
297 100101001 1 0 0 1 0 1 0 0 1 0
298 100101010 1 0 0 1 0 1 0 1 0 -1 Neg
299 100101011 1 0 0 1 0 1 0 1 1 -1 Neg
300 100101100 1 0 0 1 0 1 1 0 0 0
301 100101101 1 0 0 1 0 1 1 0 1 0
302 100101110 1 0 0 1 0 1 1 1 0 -1 Neg
303 100101111 1 0 0 1 0 1 1 1 1 -1 Neg
304 100110000 1 0 0 1 1 0 0 0 0 0
305 100110001 1 0 0 1 1 0 0 0 1 1
306 100110010 1 0 0 1 1 0 0 1 0 0
307 100110011 1 0 0 1 1 0 0 1 1 1
308 100110100 1 0 0 1 1 0 1 0 0 0
309 100110101 1 0 0 1 1 0 1 0 1 1
310 100110110 1 0 0 1 1 0 1 1 0 0
311 100110111 1 0 0 1 1 0 1 1 1 1
312 100111000 1 0 0 1 1 1 0 0 0 0
313 100111001 1 0 0 1 1 1 0 0 1 1
314 100111010 1 0 0 1 1 1 0 1 0 -1 Neg
315 100111011 1 0 0 1 1 1 0 1 1 0
316 100111100 1 0 0 1 1 1 1 0 0 0
317 100111101 1 0 0 1 1 1 1 0 1 1
318 100111110 1 0 0 1 1 1 1 1 0 -1 Neg
319 100111111 1 0 0 1 1 1 1 1 1 0
320 101000000 1 0 1 0 0 0 0 0 0 0
321 101000001 1 0 1 0 0 0 0 0 1 0
322 101000010 1 0 1 0 0 0 0 1 0 0
323 101000011 1 0 1 0 0 0 0 1 1 0
324 101000100 1 0 1 0 0 0 1 0 0 0
325 101000101 1 0 1 0 0 0 1 0 1 0
326 101000110 1 0 1 0 0 0 1 1 0 0
327 101000111 1 0 1 0 0 0 1 1 1 0
328 101001000 1 0 1 0 0 1 0 0 0 0
329 101001001 1 0 1 0 0 1 0 0 1 0
330 101001010 1 0 1 0 0 1 0 1 0 -1 Neg
331 101001011 1 0 1 0 0 1 0 1 1 -1 Neg
332 101001100 1 0 1 0 0 1 1 0 0 0
333 101001101 1 0 1 0 0 1 1 0 1 0
334 101001110 1 0 1 0 0 1 1 1 0 -1 Neg
335 101001111 1 0 1 0 0 1 1 1 1 -1 Neg
336 101010000 1 0 1 0 1 0 0 0 0 0
337 101010001 1 0 1 0 1 0 0 0 1 1
338 101010010 1 0 1 0 1 0 0 1 0 0
339 101010011 1 0 1 0 1 0 0 1 1 1
340 101010100 1 0 1 0 1 0 1 0 0 -1 Neg
341 101010101 1 0 1 0 1 0 1 0 1 0



342 101010110 1 0 1 0 1 0 1 1 0 -1 Neg
343 101010111 1 0 1 0 1 0 1 1 1 0
344 101011000 1 0 1 0 1 1 0 0 0 0
345 101011001 1 0 1 0 1 1 0 0 1 1
346 101011010 1 0 1 0 1 1 0 1 0 -1 Neg
347 101011011 1 0 1 0 1 1 0 1 1 0
348 101011100 1 0 1 0 1 1 1 0 0 -1 Neg
349 101011101 1 0 1 0 1 1 1 0 1 0
350 101011110 1 0 1 0 1 1 1 1 0 -2 Neg
351 101011111 1 0 1 0 1 1 1 1 1 -1 Neg
352 101100000 1 0 1 1 0 0 0 0 0 0
353 101100001 1 0 1 1 0 0 0 0 1 0
354 101100010 1 0 1 1 0 0 0 1 0 1
355 101100011 1 0 1 1 0 0 0 1 1 1
356 101100100 1 0 1 1 0 0 1 0 0 0
357 101100101 1 0 1 1 0 0 1 0 1 0
358 101100110 1 0 1 1 0 0 1 1 0 1
359 101100111 1 0 1 1 0 0 1 1 1 1
360 101101000 1 0 1 1 0 1 0 0 0 0
361 101101001 1 0 1 1 0 1 0 0 1 0
362 101101010 1 0 1 1 0 1 0 1 0 0
363 101101011 1 0 1 1 0 1 0 1 1 0
364 101101100 1 0 1 1 0 1 1 0 0 0
365 101101101 1 0 1 1 0 1 1 0 1 0
366 101101110 1 0 1 1 0 1 1 1 0 0
367 101101111 1 0 1 1 0 1 1 1 1 0
368 101110000 1 0 1 1 1 0 0 0 0 0
369 101110001 1 0 1 1 1 0 0 0 1 1
370 101110010 1 0 1 1 1 0 0 1 0 1
371 101110011 1 0 1 1 1 0 0 1 1 2
372 101110100 1 0 1 1 1 0 1 0 0 -1 Neg
373 101110101 1 0 1 1 1 0 1 0 1 0
374 101110110 1 0 1 1 1 0 1 1 0 0
375 101110111 1 0 1 1 1 0 1 1 1 1
376 101111000 1 0 1 1 1 1 0 0 0 0
377 101111001 1 0 1 1 1 1 0 0 1 1
378 101111010 1 0 1 1 1 1 0 1 0 0
379 101111011 1 0 1 1 1 1 0 1 1 1
380 101111100 1 0 1 1 1 1 1 0 0 -1 Neg
381 101111101 1 0 1 1 1 1 1 0 1 0
382 101111110 1 0 1 1 1 1 1 1 0 -1 Neg
383 101111111 1 0 1 1 1 1 1 1 1 0
384 110000000 1 1 0 0 0 0 0 0 0 0
385 110000001 1 1 0 0 0 0 0 0 1 0
386 110000010 1 1 0 0 0 0 0 1 0 0
387 110000011 1 1 0 0 0 0 0 1 1 0
388 110000100 1 1 0 0 0 0 1 0 0 0
389 110000101 1 1 0 0 0 0 1 0 1 0
390 110000110 1 1 0 0 0 0 1 1 0 0



391 110000111 1 1 0 0 0 0 1 1 1 0
392 110001000 1 1 0 0 0 1 0 0 0 0
393 110001001 1 1 0 0 0 1 0 0 1 0
394 110001010 1 1 0 0 0 1 0 1 0 -1 Neg
395 110001011 1 1 0 0 0 1 0 1 1 -1 Neg
396 110001100 1 1 0 0 0 1 1 0 0 1
397 110001101 1 1 0 0 0 1 1 0 1 1
398 110001110 1 1 0 0 0 1 1 1 0 0
399 110001111 1 1 0 0 0 1 1 1 1 0
400 110010000 1 1 0 0 1 0 0 0 0 0
401 110010001 1 1 0 0 1 0 0 0 1 1
402 110010010 1 1 0 0 1 0 0 1 0 0
403 110010011 1 1 0 0 1 0 0 1 1 1
404 110010100 1 1 0 0 1 0 1 0 0 0
405 110010101 1 1 0 0 1 0 1 0 1 1
406 110010110 1 1 0 0 1 0 1 1 0 0
407 110010111 1 1 0 0 1 0 1 1 1 1
408 110011000 1 1 0 0 1 1 0 0 0 0
409 110011001 1 1 0 0 1 1 0 0 1 1
410 110011010 1 1 0 0 1 1 0 1 0 -1 Neg
411 110011011 1 1 0 0 1 1 0 1 1 0
412 110011100 1 1 0 0 1 1 1 0 0 1
413 110011101 1 1 0 0 1 1 1 0 1 2
414 110011110 1 1 0 0 1 1 1 1 0 0
415 110011111 1 1 0 0 1 1 1 1 1 1
416 110100000 1 1 0 1 0 0 0 0 0 0
417 110100001 1 1 0 1 0 0 0 0 1 -1 Neg
418 110100010 1 1 0 1 0 0 0 1 0 0
419 110100011 1 1 0 1 0 0 0 1 1 -1 Neg
420 110100100 1 1 0 1 0 0 1 0 0 0
421 110100101 1 1 0 1 0 0 1 0 1 -1 Neg
422 110100110 1 1 0 1 0 0 1 1 0 0
423 110100111 1 1 0 1 0 0 1 1 1 -1 Neg
424 110101000 1 1 0 1 0 1 0 0 0 0
425 110101001 1 1 0 1 0 1 0 0 1 -1 Neg
426 110101010 1 1 0 1 0 1 0 1 0 -1 Neg
427 110101011 1 1 0 1 0 1 0 1 1 -2 Neg
428 110101100 1 1 0 1 0 1 1 0 0 1
429 110101101 1 1 0 1 0 1 1 0 1 0
430 110101110 1 1 0 1 0 1 1 1 0 0
431 110101111 1 1 0 1 0 1 1 1 1 -1 Neg
432 110110000 1 1 0 1 1 0 0 0 0 0
433 110110001 1 1 0 1 1 0 0 0 1 0
434 110110010 1 1 0 1 1 0 0 1 0 0
435 110110011 1 1 0 1 1 0 0 1 1 0
436 110110100 1 1 0 1 1 0 1 0 0 0
437 110110101 1 1 0 1 1 0 1 0 1 0
438 110110110 1 1 0 1 1 0 1 1 0 0
439 110110111 1 1 0 1 1 0 1 1 1 0



440 110111000 1 1 0 1 1 1 0 0 0 0
441 110111001 1 1 0 1 1 1 0 0 1 0
442 110111010 1 1 0 1 1 1 0 1 0 -1 Neg
443 110111011 1 1 0 1 1 1 0 1 1 -1 Neg
444 110111100 1 1 0 1 1 1 1 0 0 1
445 110111101 1 1 0 1 1 1 1 0 1 1
446 110111110 1 1 0 1 1 1 1 1 0 0
447 110111111 1 1 0 1 1 1 1 1 1 0
448 111000000 1 1 1 0 0 0 0 0 0 0
449 111000001 1 1 1 0 0 0 0 0 1 0
450 111000010 1 1 1 0 0 0 0 1 0 0
451 111000011 1 1 1 0 0 0 0 1 1 0
452 111000100 1 1 1 0 0 0 1 0 0 0
453 111000101 1 1 1 0 0 0 1 0 1 0
454 111000110 1 1 1 0 0 0 1 1 0 0
455 111000111 1 1 1 0 0 0 1 1 1 0
456 111001000 1 1 1 0 0 1 0 0 0 0
457 111001001 1 1 1 0 0 1 0 0 1 0
458 111001010 1 1 1 0 0 1 0 1 0 -1 Neg
459 111001011 1 1 1 0 0 1 0 1 1 -1 Neg
460 111001100 1 1 1 0 0 1 1 0 0 1
461 111001101 1 1 1 0 0 1 1 0 1 1
462 111001110 1 1 1 0 0 1 1 1 0 0
463 111001111 1 1 1 0 0 1 1 1 1 0
464 111010000 1 1 1 0 1 0 0 0 0 0
465 111010001 1 1 1 0 1 0 0 0 1 1
466 111010010 1 1 1 0 1 0 0 1 0 0
467 111010011 1 1 1 0 1 0 0 1 1 1
468 111010100 1 1 1 0 1 0 1 0 0 -1 Neg
469 111010101 1 1 1 0 1 0 1 0 1 0
470 111010110 1 1 1 0 1 0 1 1 0 -1 Neg
471 111010111 1 1 1 0 1 0 1 1 1 0
472 111011000 1 1 1 0 1 1 0 0 0 0
473 111011001 1 1 1 0 1 1 0 0 1 1
474 111011010 1 1 1 0 1 1 0 1 0 -1 Neg
475 111011011 1 1 1 0 1 1 0 1 1 0
476 111011100 1 1 1 0 1 1 1 0 0 0
477 111011101 1 1 1 0 1 1 1 0 1 1
478 111011110 1 1 1 0 1 1 1 1 0 -1 Neg
479 111011111 1 1 1 0 1 1 1 1 1 0
480 111100000 1 1 1 1 0 0 0 0 0 0
481 111100001 1 1 1 1 0 0 0 0 1 -1 Neg
482 111100010 1 1 1 1 0 0 0 1 0 1
483 111100011 1 1 1 1 0 0 0 1 1 0
484 111100100 1 1 1 1 0 0 1 0 0 0
485 111100101 1 1 1 1 0 0 1 0 1 -1 Neg
486 111100110 1 1 1 1 0 0 1 1 0 1
487 111100111 1 1 1 1 0 0 1 1 1 0
488 111101000 1 1 1 1 0 1 0 0 0 0



489 111101001 1 1 1 1 0 1 0 0 1 -1 Neg
490 111101010 1 1 1 1 0 1 0 1 0 0
491 111101011 1 1 1 1 0 1 0 1 1 -1 Neg
492 111101100 1 1 1 1 0 1 1 0 0 1
493 111101101 1 1 1 1 0 1 1 0 1 0
494 111101110 1 1 1 1 0 1 1 1 0 1
495 111101111 1 1 1 1 0 1 1 1 1 0
496 111110000 1 1 1 1 1 0 0 0 0 0
497 111110001 1 1 1 1 1 0 0 0 1 0
498 111110010 1 1 1 1 1 0 0 1 0 1
499 111110011 1 1 1 1 1 0 0 1 1 1
500 111110100 1 1 1 1 1 0 1 0 0 -1 Neg
501 111110101 1 1 1 1 1 0 1 0 1 -1 Neg
502 111110110 1 1 1 1 1 0 1 1 0 0
503 111110111 1 1 1 1 1 0 1 1 1 0
504 111111000 1 1 1 1 1 1 0 0 0 0
505 111111001 1 1 1 1 1 1 0 0 1 0
506 111111010 1 1 1 1 1 1 0 1 0 0
507 111111011 1 1 1 1 1 1 0 1 1 0
508 111111100 1 1 1 1 1 1 1 0 0 0
509 111111101 1 1 1 1 1 1 1 0 1 0
510 111111110 1 1 1 1 1 1 1 1 0 0
511 111111111 1 1 1 1 1 1 1 1 1 0



APPENDIX B

OBSTRUCTIVE NETWORKS UP TO REFLECTION FOR SECTION 3.3

This appendix provides pictures for each of the 27 unique obstructive networks,

up to reflection, that were found in Section 3.3. They are classified by their number

of symmetries.

Obstructive Networks Containing Two Symmetries
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Obstructive Networks Containing One Symmetry
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Obstructive Networks Containing No Symmetries
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