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1 Abstract

This project seeks to formulate a mathematical model to predict the buckling of a graphene layer be-
tween two rigid substrates. The model is designed to represent a theoretical system consisting of a graphene
layer when it is parallel to the substrates and an edge load is applied to the ends of the layer. Our goal is
to use this model to predict buckling loads given different assumptions for Van der Waals forces between
the graphene layer and the substrates. The motivation for this project is to further our knowledge regard-
ing the mechanical properties of graphene. The results of this project will contribute to a better theoretical
understanding of graphene’s deformation in response to applied loads. These developments can be applied
to assist engineers and scientists in incorporating graphene into a variety of potential applications. Further-

more, this research will advance the understanding of the mechanics of nanoscale structures.



2 Introduction

Fullerenes are cage like structures formed by carbon atoms in a hexagonal lattice configuration. In
the 1980’s, researchers at Rice University were the first to begin investigating the chemistry of fullerenes
[1]. This research laid the groundwork for the eventual identification and synthesis of carbon nanotubes,
which are a longer configuration of the fullerene structure. You can think of carbon nanotubes as a sheet of

graphite rolled into a tube-like cylinder.

Figure 1: The geometry of a carbon nanotube [2].

Researchers first observed carbon nanotubes in 1991 using transmission electron microscopy tech-
niques [3]. Initially, the early nanotubes observed were multi-wall nanotubes, but by 1993 researchers
became more interested in single-wall nanotubes [4, 5]. As the name implies, these nanotubes consist of a
single carbon layer with a wall thickness of a single atom. Due to their unique properties there was great
interest in these single-wall nanotubes. Large scale synthesis techniques were eventually developed which
led to widespread study and research into the many interesting properties and potential applications of the
nanotubes [6, 7]. While an abundance of research now exists on this topic, there are still many questions to
be answered and investigated.

Single-walled nanotubes are graphene sheets rolled into a cylindrical structure [8]. A graphene sheet
is a single atom thick layer of carbon organized in a hexagonal lattice shape similar to that of a honeycomb

pattern. This pattern is present in Figure 1. Because graphene sheets are the basic structure of these single-



walled nanotubes, there is value in understanding more about the properties of graphene sheets themselves
[9]. By investigating graphene sheets, we can then extrapolate and apply our findings to advance the field of
nanotube development and research.

Currently a large body of research exists that has observed and characterized many properties of
carbon nanotubes and graphene sheets. From a mechanical perspective, researchers have discovered that
carbon nanotubes have notable values of elastic strain, fracture strain sustaining capability [10, 11], and
elastic modulus [12, 13] . Furthermore, dynamic simulations have been developed to illustrate the defor-
mation properties of nanotubes. These simulations demonstrate the flexibility inherent to these nanotubes
when exposed to harsh bending [14].

There has been a large amount of interest in the electrical properties of graphene for a variety of
uses, some of which include nanoscale devices [15]. An abundance of research has established a relationship
between the mechanical deformation of graphene and its electrical properties [16, 17, 18, 19]. Therefore,
in order for graphene to be used in the development of new nanotechnologies, we need to better understand
how graphene responds to applied loads and other mechanical forces [20, 21, 22]. By better understanding
the mechanical deformation of graphene sheets, researchers can harness the unique electrical properties of
the material to expand the use of carbon nanotubes in novel devices and applications.

While many researchers are interested in the electrical applications of graphene and carbon nan-
otubes, others are interested in utilizing their mechanical properties. Because of the properties briefly men-
tioned previously, nanotubes and graphene are exceptional candidates for use in material reinforcement.
This area of research has generated new materials including polymer [23], metal, and ceramic-matrix com-
posites [24]. Some researchers have experienced difficulty developing these new materials, as there are often
unwanted interactions between the carbon component and the material being reinforced [25]. This area of
research and development could be improved by an increased understanding of the thermo-mechanical prop-
erties and behavior of the material [26]. By investigating graphene’s mechanical responses, our research will
potentially assist in furthering the development of these composite materials.

As established by the current literature and research in this field, it is clear that understading
graphene’s deformation is critical to the development of new technologies. This research project investi-
gates how graphene responds to applied loads using mathmatical modeling. The specific system modeled
here involves a sheet of graphene between two substrates with applied forces on either side of the graphene

sheet. See Figure 2. A model was created to represent the total energy in the graphene and substrate system.



The model was developed by assuming that the total energy of the system contains terms describing bending
energy, interaction energy, inextensibility constraints, and work from applied loads. Once this was done, a
2-point boundary problem was formed from the total energy. This was done using Calculus of Variations to
write the Euler-LaGrange equations. Then, we found the trivial branch for the 2-point boundary problem.
The trivial branch corresponds to the graphene being an equivalent distance from the upper and lower sub-
strates. The next step was to linearize the problem about the trivial branch. After linearizing the problem,
linear algebra methods were used to get the problem into a general form that could be solved using MAT-
LAB code. Finally, we developed MATLAB code to predict buckling loads and to perform a parametric
study by varying the parameters in the interaction terms in the model. By changing the input parameter

values, we can observe how buckling occurs given different interaction forces.



3 Deriving the Total Energy Equation

This section will describe the system we study and present the different assumptions for contribu-
tions to the total energy of the system. After introducing each contribution we will put these together to

form the total energy used for the model.

3.1 The Problem

First we describe the physical problem. We are studying a graphene sheet between two substrates
that are D distance apart. We place the origin at the same height as the lower substrate. This means that
the distance from the lower substrate to the graphene sheet can be expressed as y(s) and the distance from
the upper substrate to the graphene sheet is (D — y(s)). Any point on the graphene sheet can be written as
(x,y). There is a force applied to each end of the sheet. For this model we will represent these forces with

equal magnitude and opposite direction which are B and —B. Figure 2 illustrates the situation.
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Figure 2: Geometry of a cross-section of graphene between two substrates with edge loads.

We assume that the graphene sheet deforms the same in each cross-section defined by a plane per-
pendicular to %. We model each cross-section as a rod. Figure 2 shows a typical cross-section in the
77plane. We describe a typical cross-section mathematically using a vector function

T(s)=xz(s)i +y(s)j for s in[0, L]. (1)

We will also assume that the rod is inextensible. This means that the length of the rod will not



change under deformation of the graphene sheet. We assume the reference configuration of the rod is the
set of points (s,0) with s in [0, L] along the positive x-axis. So in the reference configuration, the length

between 2 points (a,0) and (s,0) is s — a, where we assume a < s. From inextensibility we also know that

(s—a) = [ 17l

which implies that

or

7'(s) = cos(0(s)) 7 + sin(0(s)) 7 - (2)

Using (1) and (2), we see that
7'(s) = cos(0(s)),

y'(s) = sin(0(s)). 3)

3.2 Bending Energy Component

We next compute the curvature of the cross-section of the graphene sheet. Recall that the curvature

k is defined by .
_[T7(s)]
") = )
We know . .
?’(s) = |;/EZ§| = cos((s)) é —1|—sm(9(s))] = cos(6(s)) 7 + sin(6(s)) 7.
Hence

?/(S) = —sin(0)0'i + cos(0)6'j



and

IT(s)| = | — sin(6)0'i + cos(0)05| = |6/].

So

We use ¢ as the signed curvature. The bending energy for the model will be defined as

k

L
BE = —/ 0 (s)?ds. 4)
2 Jo

In this, £ is the bending modulus or rigidity of the graphene represented as positive constant.

3.3 Interaction Energy

For this model there is an upper and lower substrate. We assume there is interaction between the
substrates and the graphene sheet. We assume that this interaction at the point s on the cross-section depends
only on the vertical distances betweeen that point and the upper and lower substrates. We let V; and V,,
denote the interaction energy per unit length with the lower and upper substrates. Hence the total interaction

energy is

L L
/ Viy(s))ds + / V(D — y(s))ds. )
0 0

Specific functional forms for V; and V,, will be introduced in section 6 to evaluate the effects of interaction
energy. See (53).

In the total energy, the constraint of inextensibility is enforced by introducing the terms

L L
/0 7(s)(y'(s) —sin(0(s)))ds +/0 72(s)(2'(5) — cos(0(s)))ds. (©6)
Here ~; and 79 are LaGrange multipliers.

3.4 Work From Applied Loads

The application of the edge load displaces the ends of the cross-section meaning work is done. This
causes energy to be stored in the system. This means we must subtract off the work from both edge loads.

Here we will derive the work from the applied loads for each side. Work is the dot product of the force and



displacement. Hence

VVleft = }—% : 1—5
=BT -(7(0) - 7)
=B - (2(0) = x) 7 + (y(0) —u) 7) = B(x(0) — z),
and

This gives
Wieft = B(x(0) — ) (7)

and

Wright = _B($(L) - J"r)' (3)

3.5 Total Energy Equation

By combining the bending energy (4), interaction energy (5), inextensibility constraints (6), and

subtracting off the work from the applied loads (7, 8) we get the following equation for total energy,

L L L L
Blo.0) =5 [ 0Pas+ [ Vi) + [ VD =u) + [ 0/ (s) sino())ds

L ©)]
T / 72(3)(@/(5) — cos(0(s)))ds — B(x(0) — m)—(— B(a(L) — z,.)).



4 Deriving a 2-Point Boundary-Value Problem

In this section we derive a 2-point boundary-value problem whose solutions are equilibrium configu-
rations of the rod. For this we use standard methods of the Calculus of Variations to develop Euler-Legrange
equations by seeking minimizers of the total energy. Let (%,7, ) be a minimizer of the total energy E. We
define a new function by fixing two of the three variables. For instance we fix 6 at § and y at 7. Then we
can define f(¢) = E[Z + ex,7, 0] where z is an arbitrary function. Then f(¢) should be mimimzed when
e = 0. Hence we take an ¢ derivitive of f(e) and we set the resulting expression to 0. The process will be

completed individually for all three variables, which yields the Euler-Legrange equations.

4.1 Variationin x

We set
y(s) =y(s),
0(s) = 0(s),
and
z(s) = T(s) + ex(s)
in E, giving

+ [ ()@ (s) —sin(0(s)))ds) + | 72(s)(T(s) + ex(s))" — cos(B(s)))ds

10



Since we will be taking a % derivative of each side we can remove all terms that do not have Z(s) + ex(s).

This leaves us with

-4/ C6)(F (5) + ' (5) — con(i()ds
—B((5(0) + €a(0)) — 2)~(~B((@(L) + ex(L)) — 2. ))] | _,
= [[ @) + ') — cos@sas] |
L1 B(0) + ex(0)) ~ ) (~B(FE) +ea() ~ )] g
-/ "L (o)) + 0 (s)er () — 20(5) osF(s)) ] g
d

SO

L
0=— '/0 z(s)v4(s)ds + z(L)(v2(L) + B) — 2(0)(72(0) + B). (10)

Because (10) must hold for arbitrary functions x(s), we can conclude by standard arguments from the

Calculus of Variations that

= Afé(s)v
—-B = A/Q(L)v
—B = "/2(0).
These three equations together imply
Y2 =—B. (11)

11



4.2 Variation in y

We set
z(s) = T(s),
0(s) = 0(s),
and
y(s) =7(s) + ey(s)
in E, giving

Again, to find the minimum of the function we set the derivative equal to 0, so

0= F(0) = 55O L = S BIE(E).3(6) + e0(s), Ty

Since we will be taking a % derivative of each side we can remove all terms that do not have y(s) + ey(s).

This leaves us with

L L
0- 2 [ Vi) +entsNds + [ VD = @(5) + ent))as

() ((W(s) +ey(s)) - Sin(g(S)))dS)] |0

+
S~
h

L
- U Vi((s) + ey(s))ds + Va(D — (5i(s) + €y<3>>>d3] 0
L
—i—% [/0 71(8)((G(s) + ey(s)) — sin(g(S)))dS)} ‘ezo

12



L
= [ 5 WAE6) + ey()ds + Vil D = ((5) + v s, g

L
+ [T ST )+ s)er () = (o) snP(s) ],

L
= /0 [V/(@(s) + ey(s))y(s)ds — V(D — (5(s) + ey(s)))y(s)]ds|

SO

L
0= /0 y($) [V @(s)) = V(D = 7(s)) = 71(s)lds + n(L)y(L) — 71(0)y(0). (12)

Because (12) must hold for arbitrary functions y(s), we can conclude by standard arguments from the

Calculus of Variations that

m(s) =V/@(s)) — Va(D — (¥(s))), (13)
0=mn(L), (14)
0 =1(0). (15)
4.3 Variation in 0
We set
z(s) = T(s),
y(s) =7(s),
and
6(s) = O(s) + €b(s)
in E, giving

13



o |

:klﬂm@+agyw&+/ Vi(g /
L

L —_— —_—
+/ () (¥ (s) — sin(6(s) + ef(s )))d8+/ 72(8) (T () — cos(6(s) + €b(s)))ds
0 0

— B@(0) —7)(-B(@(L) — 7).

Again, to find the minimum of the function we set the derivative equal to 0, so

0=f(0)= %f(e)h:o = %E[E(s),@(s),?(s) +e€(s))]‘€:0.

Since we will be taking a % derivative of each side we can remove all terms that do not have

0(s) + €f(s). This leaves us with

L L
je [k/ (6(s) + €(s ))’2ds+/ 71(5)(F (5) — sin(0(s) + €b(s)))ds

+ /OL v2(8)(Z'(5) — cos(0(s) + €f(s ]

L

=[ﬂ§@@+wmwu 11(s) cos(@(s) + e0(5))0(s)
+ 7o(s) sin(f(s) + €6(s)) (3)]‘15‘5:0

L - L _
:Akﬂw%m+/[%UwWUW®+w@ww®WM%
= k:9 ‘0 / k:9 s)ds + / [—71(s) cos(@(s))@(s) + 72(s) sin(?(s))@(s)]ds

L
O—W@WD—WWW®+AG@PM%) Y1(s) cos(0(s)) + ya2(s) sin(d(s)))ds.  (16)

Because (16) must hold for arbitrary functions 6(s), we can conclude by standard arguments from the

Calculus of Variations that

0= —k:@l/(s) — ~1(5) cos(B(s)) + v2(s) sin(A(s)), (17)

14



0=k0 (L),

/

0 = k0 (0).

Rearranging (17) and substituting 2 (s) with -B (see (11)) gives

7'(s) = —$ cos(B(s)) — gsin(g(s)), (18)
0=26(L), (19)
0=26(0). (20)

15



S Identifying the 2-Point Boundary Problem

In this section we identify the 2-point boundary problem from the equations in the previous sections

as well as nondimensionalize the problem. Using (3), (13), (14), (15), (18), (19), and (20) we can identify

7'(s) = sin(6(s)),

1(s) =V/(@(s)) = Vu(D = (7(s))),

with boundary conditions

as a 2-point boundary problem satisfied by minimizers of the total energy. From this point on we will refer

to Z(s),7(s), 0(s) as z(s),y(s), O(s) for easier syntax. We can convert the problem into a 1*-order system

of differential equations by introducting a new variable . Setting

and taking a derivitive gives us

0" (s) = V/(s).

Adding (21) to the system and using (22) to substitute results in

y'(s) = sin(6(s)),

() =V (y(s) = Va(D = (y(s))),

V(s) = —’yl]is) cos(6(s)) — %sin(@(s)),

16

1)

(22)

(23)

(24)

(25)

(26)



with boundary conditions
0=m(L) =7(0),0 =v(L) = v(0). 27)
5.1 Nondimensionalizing the 2-Point Boundary Problem

We nondimensionalize the system (23), (24), (25), (26), and (27). This will be done by introducing

the non-dimensional quantities

§:%—>s:§L, (28)
g=25y=9L 29)
L bl
IQ—I/L—>I/_I> 30)
— =7
o D R
D=2 —D=DL (31)
0=0—-0=10 (32)
7 :71L2 Ly = DiE (33)
! 2 m 2
and
. BI? Bk
B==--B="15. (34)

It is also necessary to relate the derivitives for the variables. These relations are

, dy d@L) Ldj dj

Y= 4s T dGL) T Lds d& (35)
dv d@Y) 1 dp
r_ 2T L - - =
YT 4s T dGL) T I2dd (36)
o d@) 1do
9/ = — = - —— 7
ds ~ d(3L) ~ Lds’ G7)
and
dy  (ifz)  k di
r_ YN - v
T 4s T dGL) I3 ds 38)

17



We substitute (35) and (32) into (23) to get

dy o
d—g — sin(d). (39)
Substituting (37) and (30) into (26) gives
1dd v df .
I T @ " 0

Substituting (36), (33), (32), and (34) into (25) gives

1 do  —Yits . B
ﬁd_g = 7;” cos(0) — 152 sin(0).
This can be simplified to
dp . R
dg = —~1 cos(f) — Bsin(6). 41)

Substituting (38), (31), and (29) into (24) gives

k dfyl N (T ~
35 = (L) = Vu(DL = 9L).
This can be simplified to
dffl L3 1/~ L3 ! ~
= 2 V/(§L) — —V!(L(D -
= Sy - SViLD - g)
We will define two new functions, F(9) and Fy/(9), as
L,
Fi(§) = --V/(L),
L,
Fu(3) = Vi)
Now we can write
dv N A
8= F() ~ Fu(D - ). (42)

Finally, we can substitute our boundary conditions using (33) and (30) to get

0=71(0) =7(1), 0=2(0)=2p(1). (43)



Since we rescaled s by L, we now have boundaries at 0 and 1 instead of 0 and L.
From this point on we will replace ¢, 7, f), é, ~1, and B with y,v, D, 0,~1, and B for easier syntax.

Using (39), (40), (41), (42), and (43) the nondimensionalized system is

0'(s) = v, (44)
V' = — cos(0) — Bsin(0), (45)
71 = Fi(y) — Fu(D — y), (46)
y' = sin(0), (47)
with boundary conditions
0=7(0) =%(), 0=v(0)=r(). (48)

The (44) through (48) 2-point boundary problem will be the problem we study for this project.

19



6 Identifying the Base State

In this section we identify base states for our 2-point boundary problem. We seek base states that
correspond to the cross-section of the graphene sheet remaining straight and being parallel to both substrates.

Hence we assume that y(s) = 7 for all s in [0, 1] where 7 is a constant between 0 and D, plugging 7 into

(47) gives
0 =sinb,
hence we can choose 6 to be
0 =0. (49)
Plugging (49) into (44) gives
0=u. (50)

Plugging (49) and (50) into (45) gives
0 = —v1 cos(0) — Bsin(0),
hence
0=1r. (51)

Plugging (51) and ¥ into (46) gives
0=F/(y) — Fu(D - 7). (52)

We now make more specific assumptions about the interaction forces. To find values of 7 that satisfy

(52), we define F; and F, as

- ((3) - (3) w3 (3)) e

These definitions of F; and F,, follow from assuming a generalization of the Lennard-Jones potential for
the interaction energy between the rod and the substrate [27]. The standard Lennard-Jones potential would
lead to exponents of 13 and 7 in the interaction force, which we have generalized to ny and no in F; and

n3 and ny in F,,. In our definition of Fj in (53), w; determines the strength of the interaction and o; is the

20



equilibrium spacing. We will refer to w as the van der Waals strength for F;. Similar statements apply
to F,,. For our parametric study in section 9, we make specific choices for nj, ns, n3, and ny. But we
assume that n; > mno and n3 > ny, so that F; and F,, are qualitatively similar to the interaction force we
get using the standard Lennard-Jones exponent. See Figure 3. From Figure 3 we see that Fj(1) is zero and
that y = 07 = 1 is the unique equilibrium of y. We see that for y < 1, the interaction force is repulsive and
that this repulsive force goes to infinty as y goes to 0. For y > 1, the interaction force is attractive. Fj has a

n2

1
unique minimum at y = o (23)"2"" = 1(%) 2-1 ~ 1.4142 and the attractive force decays to 0 as y goes

to infinity.

0 2 4 6 8 10

Figure 3: Lower interaction force F; with parameters wy = 1,01 = 1,n; = 4, and ny = 2.

Using (53), we can choose values for wi, w2, 01, 02,11, N2, n3, and ng,and then we can solve (52)

numerically using MATLAB. A typical such plot is shown in Figure 4.

21



10

branch 1| .
—===branch 2
branch 3

.=

y

Figure 4: Equilirium configurations for F; = F,, with wy = wes = 1,01 = 02 = 1,n1 = n3 = 4, and
ng = ng = 2.

There are a few observations we can make about the solution curves in Figure 4 before we change
the parameters. The first observation we can make is that when F; = F,,, we get three different branches of
equilibrium configurations. We first discuss branch 1. Here we can see that y = %D. This means that the
rod is at equilibrium exactly halfway between the upper and lower substrates.

Next we identify the point in Figure 4 at which branches 2 and 3 split from branch 1. The y
coordinate of this point can be determined to be y = o (%?'2*)”171"2 We determine this by setting D = 27 in
(52), taking a derivitive of the right-hand side with respect to ¥ setting the result to 0, and then solving for ¥.
This procedure is based on the Implicit Function Theorem. Because the point lies on the line y = %D, we
know D = 201(%)ﬁ. We shall refer to the point <01(%)”171"2 , 201(%)ﬁ) as the branch point.

In Figure 4 the base state correspond to the different colored lines labeled branch 1, branch 2, and
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branch 3. In section 9 we will consider different choices for the parameters in F; and F,, when performing
our parametric study of buckling.

In Figure 4, as the substrate separation increases branch 3 approaches the line y = D — 1. In our
system, this represent the rod sticking to the upper substrate as the two substrates get further and further
apart. As the separation increases, branch 2 approaches the line y = 1. This represent the rod sticking to the
lower substrate as the substrates separate.

We can also make observations from these plots about the number of different configuration at
different substrate separations. We see below the branch point in Figure 4 there is one configuration, the
configuration exactly halfway between the substrates. While above the branch point there are three different
configurations. It is also important to identify that in Figure 4 every value of y will have a corresponding
D value that solves (52). This means at any rod height there is at least one equilibrium configuration with

some substrate seperation.

6.1 Linearizing About the Base State

To linearize about the base state we will use

V=TU+eD where 7 = 0, (54)
0 =0+ eb where 6 = 0, (55)
N="71+en where 7; = 0, (56)
and
Y=+ €j where y = ¥. (57)

After substituting these into the system of differential equations we will take an e derivitive of each and then
sete = 0.
Substituting (55) and (54) into (44) and taking % gives

d (o - d
7 [0, + 69'] L:O == [T+ el] |

e=0’
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which simplifies to

0 =70. (58)

Substituting (54), (55), and (56) into (45) and taking % gives

d d _ N _ R
7 [V + ] ‘e:() = [—(71 + e71) cos(f + €f) — Bsin(6 + 66)} |€:0,
D' = —41 cos(0) + sin(0)A0 — B cos(0)d,
which simplifies to
v = —+, — B6. (59)
Substituting (56) and (57) into (46) and taking % gives
d —/ Al d — ~ - ~
ey = 5 @+ ) - Fu(D =7 = )] | g,
1 =F@)9§— F(D-79)(-0),
which simplifies to
1 =9(F @) + F (D - 7).
We will now set
A=F(y) +F,(D-7) (60)
giving
i1 = Ag. (61)
Substituting (57) and (55) into (47) and taking % gives
d —/ A d N A
% 7+ €tf] L:O == [sm(@ + 69)] L:O,
§ = cos(0)0,
which simplifies to
§ = 6. (62)



Substituting (56) and (54) into (48) and taking % gives

0] = 2 2(0) + e 0)]]

which simplifies to

0= 41(0).

The rest of the boundary conditions are computed similarly giving

0 =v,
V' = —y1 — B0,
7 = Ay,
y =0,

0=(0) = n(1) = »(0) = v(1).

Note that the information about the base state is now contained withtin A, see (60).

We can write the system of equations (64), (65), (66), and (67) with matrices as

- -/ - - - -

0 0 1 0 0 0

v -B 0 -1 0 v

%1 - 0 0 0 A||m
Y| i 1 0 O 0_ K2
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(64)

(65)

(66)

(67)

(68)

(69)



If we set

0
v
=X (70)
ga!
_y_
and ) }
0O 1 0 O
-B 0 -1 0
— A, (71)
0 0 0 A
_1 0 0 0_
then we can rewrite (69) as
X' =AX. (72)
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7 Finding Nontrivial Solutions to the Linearized Problem

We want to find combinations of A and B that correspond to nontrival solutions of the 2-point
boundary value problem consisting of (68) and (69). Note that A is defined by (60) and F; and F), are
defined by (53). The combination of these shows that A itself is a function of the parameters w1, wa, 01, 02,
ni, N2, n3, and ny. This means that by finding combinations of A and B where (68), (69) has nontrivial
solutions we can then find combinations of all the parameters that correspond to non-trivial solutions.

The problem (68), (69) has a general solution X (s) = eAS(_J/) where Zl) is a vector of arbitrary con-
stants. We get conditions on A and B by enforcing the boundary conditions. First, it is useful to diagonalize
A and put the matrix exponential in a different form. To do this we find eigenvalues and eigenvectors for A.

We solve for eigenvalues by solving det(A — AI) = 0, or

-2 1 0 O

-B -\ -1 0
det =0. (73)
0 0 -x A

This gives
0=X+BX+A4,

which has 4 solutions

A= %\/—B + VB2 — 44, (74)

1
Ao = —\/—B — /B2 — 44, 75
2 \/5\/ (75)

A3 = —%\/—B + /B2 — 44, (76)

and

1
M=——=\/—B—\B?—-4A. 77
4 \/5\/ (77)

To calculate the eigenvectors we solve 0 = (A= XI)¢,or
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0 -2 1 0 0 c1
0 -B —-x -1 0 c2
= ) (78)
0 0 0 —-XA A cs
0 1 0 0 =Xl
where A is one of the 4 values given above. This matrix equation corresponds to
0= —Acy + ¢, (79)
0= —BCl — )\CQ — C3, (80)
0=—M\c3 + A, (81)
and
0= C1 — /\C4. (82)

Choosing ¢4 = 1 as an initial choice and substituting into (81) and (82) gives c3 = é and ¢c; = A re-
spectively. Substitiuting ¢; = A into (79) results in c; = A2. Using these new values we can write the

eigenvector ¢ corresponding to the eigenvalue \ as

A
AZ
= (83)
A
A
1
We now introduce two new matrices D and P. D is the diagonal matrix
A 0 0 0
0 X 0 O
D= (84)
0 0 X3 O
0 0 0 M\

where A to A4 are given by (74), (75), (76), and (77). P is the matrix whose i™ column is the eigenvector
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corresponding to the eigenvalue \;. So

A1 A A3 N\

PYEPY R IDY,
pP— 1 2 3 4 ) (85)
A1 A2 A3 N\

11 1 1

P~ is found using the adjoint method for finding inverse matrices. This process results in

[ A A4 A1 AaAT A3 AL
BRI v i vl e F b v
A A4 A1 MAT-AY A
pl_ 1 Mo NTA S T ThMER 86
TV el I S VN W VU I B )
174 >\4 )\1 _)\4 _)\1+)\4 A _14+)\1
AL A4 A1 AMAG+HAT A
R i i v e A v
We can now rewrite A as
A= PDP !,
and then we can write e* as
eAS — ePDP_ls‘ (87)

We use the power series to write the matrix exponential on the right-hand side of (87) as

poP-1s = (PDP71s)"  (PDP~YHYls (PDP1)2s2

By the properties of matrix multiplication (PDP~1)" = PD"P~!. This means we can write the right hand

side of (87) as

ot n!
_ PP—I + P io: (Ds)n P—l
n=1 TL'
_ - (Ds)" -1
= (I + 221 el K



Hence
el = pelPspL.

By properties of the matrix exponential, we know

Ds __

The general solution is now
X(s) = PePsp14.

(88)

(89)

(90)

Now we enforce the boundary conditions using (90). We will write Pe” P~1 as M for easier syntax. By

(70) and (90),
[ 6(0) | [, ]
0 o d
O _ X0)=d=|"
71(0) ds
| 9(0) | | dy |

o(1) di| |md
(1 . d Mod
W —Xx()=Md=M| | =| "
71(1) d3 Msd
_y(l)_ _d4_ _M4Zl)_
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where M, is the i row of M. Then from (68) we see that

0 Myd Myydy + Maydy Moy + Mo | |dy o
0 ]\43?17/> M3idy + M3ydy M3y + M3g | |dy

where the second equality uses that dy = d3 = 0. Equation (91) has a nontrivial solution if and only if
0 = Mo1 M3y — Moy M3 . 92)

Each of the components of M is a function of A\; and A\4. Since A; and A4 are functions of A and B we can

now use (92) to find combinations of A and B that correspond to non-trivial solutions of (68), (69).
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8 Using Matlab to Compute Buckling Loads

The goal in this section is to explain how we find combinations of edge loads B and separations D
at which the rod buckles. A first step is to find solutions to (92). Using (74) through (77), (85), (86), and
(89) we see that the right-hand side of (92) is a complicated function of A and B. We denote this function
by H and use MATLAB to compute H(A, B) numerically. See (A.2). Solutions to (92) correspond to zero

values of H. See Figure 5 for the plot of solutions to (92).

1600
1400
1200
1000
< 800
600
400

200

0 10 20 30 40 50
B

Figure 5: Pairs of edge loads B and A that solve (92).

One can check numerically that H has no zeros above and to the left of the curve in Figure 5. Hence
this curve is the set of points (B, A) such that B is the smallest value of B that solves (92) for each A value.
Because of this, for a point (B, A) we interpret B as the the buckling load, i.e., as the value of the edge load

at which the rod buckles for a fixed A.
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To use the data plotted in Figure 5, we can fix the parameters wy, w2, 01, 02, N1, N2, N3, and ny in
(53) and then generate 3 and D pairs that solve (52). A typical plot can be seen in Figure 4.

The plot in Figure 4 shows 3 different branches of equilibrium solutions. We next explain how we
compute the buckling load B for a given equilibrium solution. We pick a branch in Figure 4 and pick a
point (7, D) on the branch. We use the  and D values along with fixed values of the other parameters in
F; and F), to compute a value of A from (60). We then match the A value with a B value using the data
plotted in Figure 5. This procedure allows us to generate pairs of edge loads B and substrate separations
D corresponding to buckling along a given branch of equilibrium solutions. See Figure 6. Repeating this
procedure, we can construct plots like Figure 6 for different choices of the parameters w1, ws, 01, 02, N1, N2,
ns, and n4. After that is done, conclusions can be drawn about the system based the change in the graphs

that result from the different choices of parameters.
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9 Results

In this section we will interpret some of our results physically and we will present and discuss
the results generated by the parametric study performed. We will first discuss the results and model when
F; = F,. When performing the parametric study we focus on the effect of varying ws from w;. We will focus
on leaving all parameters the same and varying the value of wy. We will then analyze the plots generated as
we did with Figure 4 and will do with Figure 6.

We can use plots such as Figure 4 to determine the postion of the rod between the two substrates
when the rod is in an equilibrium configuration. Furthermore, we can use plots such as Figure 6 to observe
how much edge load is required to buckle the rod from an equilibrium configuration and to understand how
the buckling load depends on the position of the unbuckled rod between the upper and lower substrates.

Recall from Figure 4 that there are three branches of equilibrium solutions. For all the plots that
follow, the red branch, branch 2, will always be the branch that approaches the ¥y = 1 line which is the
branch where the rod is close the the lower substrate. The green branch, branch 3, will always be the branch
that approaches the y = D — 1 line which is the branch where the rod is close to the upper substrate. The
blue branch, branch 1, will always be that branch that is in the resting roughly in the middle of the two
substrates. Also, one can check numerically that the part of branch 1 in Figure 4 above and to the right of
the branch point is composed of (7, D) that in (60) generate an A < 0 value. This means the value of B is
negative as well. This physically represents that the rod requires tension to maintain stability. We are not
interested in this portion of branch 1, and the corresponding portion will not be shown in the buckling load

plots.

9.1 Casel

In this subsection, we set F; = F,,, with w; = wy = 1,00 = 09 = 1,n; = nz = 4, and
ng = ng = 2. Hence the lower and upper substrate have an equivalently strong interaction. The plot of

equilibrium configurations corresponding to these parameters is shown in Figure 4.
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Figure 6: Buckling loads for F; = F,,, withw; = w2 = 1,01 =02 =1,n1 =n3 =4,and ny = ny = 2.

On branch 1 in Figure 6 we see that as the substrate separation decreases the required buckling
load increases. This occurs because of the stronger repulsive interaction forces between from the substrates,
which one can think of as squeezing the rod and holding it in the configuration directly between the sub-
strates. A large edge load is necessary to overcome these transverse constraining forces below the branch
point. Above the branch point we can see different stories with the branch 2 and 3. As discussed previously,
branch 2 approaches y = 1 as the substrates separate representing the rod sticking to the lower substrate.
Branch 3 approaches the line y = D — 1 as the substrates separate representing the rod sticking to the
upper substrate. In both of these cases if we look at the corresponding curves on Figure 4 we see that as
substrate separation increases the buckling load increases. This larger edge load requirement is due to the
rod’s stonger interaction with the upper substrate in the case of branch 3 or the lower substrate in the case of

the branch 2.

9.2 Case?2

In this subsection, we set wy = 1,wy = .9,01 = 09 = 1,n7 = n3 = 4, and no = ny = 2. Hence

the interaction with the upper substrate is slightly weaker than the interaction with the lower substrate.

35



10 !
7
7
P4
7
8 B 7 - T
7’
6 branch 1] 1
====branch 2
o = = branch 3
n! 4
2F ’
0 1 ' 'l 'l
0 2 4 6 8

T T I T .l L] L
! I branch 1
or ; I ====branch 2|
I ! = = branch 3
8 B I " T
(I |
7 B / 'I .y
1!
()] 6 B / :I ’
/ :/
/
5 L // '/' b
ard
4r el 1
7 7
3l 1,7 .
2 1 'l M [ X
-10 0 10 20 30 40 50
B

Figure 8: Buckling loads for w; = 1,ws = .9,01 = 09 = 1,n] =n3z =4, and ny = nyg = 2.
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The results after reducing ws to 0.9 are shown in Figure 7 and Figure 8. There several differences
that we can identify in these. Compared to Figure 4, Figure 7 now has two separate curves. Branch 2 is
similar to the branch 2 from Figure 4 as it approaches the line y = 1 as substrate separation increases. The
lower part of branch 1 generally follows the y = %D is slightly steeper meaning it is still close to directly
between the substrates but it is now slightly closer to the lower substrate. We can see similar behavior
with the upper portion of branch 1. Branch 3 from Figure 7 approaches the line y = D — 1 as substrate
separation increases showing similarites to the branch 3 from Figure 4. This makes sense as when the
substrate separation is large both substrates are pulling the rod toward them but the lower interaction is
stronger because w; > ws. Alternatively when when the serperation is small the stronger repulsion of the
lower substrate pushes the rod closer to the upper substrate.

Observing the number of equilibrium solutions at different substrate separations, we find that at
substrate separation below Branch 3 there is only one equilibrium solution. At the Minimum D value of
branch 3 there are two equilibrium solutions and at substrate separations higher there are three equilibrium
solutions. We will refere to this minimum substrate separation as D,,,. This means Figure 7 goes from one
configuration to two configurations to three configurations as substrate separation increases. Figure 4 goes
from one equilibrium solution directly to three.

Another difference between Figure 6 and Figure 8 is that branch 2 and the branch 3, the branches
representing the rod being close to either the upper or the lower substrate, in Figure 4 have the same corre-
sponding buckling loads since the upper and lower interaction forces are the same. Since these forces are
no longer the same in Figure 8 there are now different corresponding buckling loads for branch 2 and 3. We
can identify that at every substrate separation, branch 2 corresponds to a larger buckling load than branch
3. Branch 1 from Figure 7 and their corresponding plots on Figure 8 are nearly the same as branch 1 from
Figure 4. The main difference is that branch 1 from Figure 7 splits into branch 2 at a smaller substrate sep-
aration. This occurs because the rod sticks to the lower substrate at a smaller substrate separation. In Figure
7 not every y value has a corresponding substrate separation that gives an equilibrium solution. Specifically

there is an interval between y = 1 and y = 2 where there are no corresponding equilibrium solutions.

9.3 Case3and4

For Case 3, we set wy = 1,wy = .5,01 = 09 = 1,n1 = ng = 4, and ny = ny = 2. Hence the

interaction with the upper substrate is weaker than the interaction with the lower substrate. See Figures 9
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Figure 9: Equilibrium configurations for wy = 1,ws = .5,01 =09 = 1,n1 = n3 =4, and ng = ny = 2.
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Figure 10: Buckling loads for w; = 1, w2 = .5,01 =02 =1,n1 =ng =4,and ny = nyg = 2.
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For Case 4, we set w1 = 1,wy = .2,01 = 09 = 1,n1 = ng = 4, and ny = ny = 2. Hence the

interaction with the upper substrate is much weaker than the interaction with the lower substrate See Figures

11 and 12
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Figure 11: Equilibrium configurations for w; = 1,ws = .2,01 =02 = 1,n1 = n3z =4, and ny = ng = 2.
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Figure 12: Buckling loads for w; = 1,w2 = .2,01 =02 = 1,n1 = n3 =4, and ngp = ng = 2.

We will not decrease wsy any further as branch 3 becomes difficult to resolve numerically on the
buckling load plots. Figure 9 and Figure 11 illustrate similar behavior to that seen in Figure 7. Figure 10,
and Figure 12 also show similar behavior to what we see in Figure 8. This similarity makes sense because
the system has not qualitatively changed in cases 2, 3, and 4. As wy becomes much smaller than w; the
length of the y values for which there are no substrate separations increases. In Figure 9 this length has
increased to approximately 1.5 units. In Figure 12 it further increases to approximately three units. As wo
becomes much smaller than w; the minimim buckling load on branch 2 for Figure 12, Figure 10, and Figure
8 increases. In Figure 8 the minimum buckling load on branch 2 is near zero and in Figure 12 it is nearly

15. The buckling loads for branch 3, the configuration that is close to the upper substrate, are decreasing as

we decrease wo.

94 CaseS5andé6

For Case 5, we set wy = 1,ws = 1.1,01 = 09 = 1,n1 = ng = 4, and no, = ngy = 2. Hence

the interaction with the upper substrate is slightly stronger than the interaction with the lower substrate. See

Figures 13 and 14.
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Figure 13: Equilibrium configurations for w; = 1,wy = 1.1,01 = 09 = 1,n1 = n3 =4,and ngo = ng = 2.
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Figure 14: Buckling loads for w; = 1l,wy = 1.1,01 =02 = 1,n; = n3z =4, and ny = nyg = 2.
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For Case 6, we set wi = l,ws = 2,01 = 09 = 1,n1 = ng = 4, and ny = ngy = 2. Hence
the interaction with the upper substrate is much stronger than the interaction with the lower substrate. See

Figures 15 and 16.
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Figure 15: Equilibrium configurations for w; = 1,wy = 2,01 = 02 = 1,n1 = n3 =4, and no = nyg = 2.
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Figure 16: Buckling loads for w; = 1,we = 2,01 =02 =1,n1 =ng =4,and ny = ng = 2.

In Figure 14 and Figure 16 the configurations that require the larger edge load to buckle is now
branch 3. The required buckling load for those configurations also increases as wy increases. This makes
sense as the attractive force pulling the rod to the substrate is greater with a larger w meaning it takes a larger
load to overcome. Case 5 and 6 are qualitatively opposite to Cases 2, 3, and 4 because now wg > w;. This
means our explanation for these the results for Case 2 holds but toward the opposite substrate. We will not

further increase wy beyond 2 as branch 1 and 3 become larger than the B values we interpolated in Figure 5.
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10 Conclusions

Using Figure 4 through Figure 16 we look at the general effect of different w values on the predic-
tions of the model. We can see the from the equilibrium configuration graphs that there are three branches of
configurations, one sticking to the lower substrate, one sticking to the upper substrate, and one held exactly
or approximately in the middle of the substrates. From Figure 4 it is evident that when the upper interaction
and lower interaction are equal the rod rests directly halfway between the substrates. As wo decreases we
can identify from Figure 12 that at large separations between the substrates this middle configuration rests
closer to the lower substrate when ws is smaller. From Figure 16 the opposite is present as the branch 1
configuration rests closer to the upper substrate when ws is larger. Since wy is associated with the upper
interaction it appears that the branch 1 configuration rests closer substrate with the larger w. The buckling
loads required for branch 1 seem to show a similar behavior in the range of w values considered. In all
the buckling load plots, when the substrate separation is small the edge load required is large and at large
substrate separations the edge load required is nearly 0. This is likely due to the larger interference from the
substrates preventing the rod from buckling at smaller seperation. The w values seem to have more of an
effect on the range of y values in branch 1 and on the specific substrate separation D at which branch 2 or
3 splits from branch 1. Branch 1 will tend toward the substrate with the smaller corresponding w and will
split toward the branch that is associated with the larger w at a smaller substrate separation D.

For the branches with configurations that stick to one of the substrates, the edge load required to
buckle the rod is different depending on which substrate the rod is sticking to. When wo is smaller the
rod needs less load to buckle when it is sticking to the upper substrate and more load to buckle when it is
sticking to the lower substrate. This can bee seen in Figure 8, Figure 10, and Figure 12. When w» is larger
the opposite is true, which can be seen in Figure 14 and Figure 16. This indicates that when the rod is
sticking to the substrate with the larger w, it requires more edge load to buckle than when the rod is sticking
to the other substrate. This is consistent with the idea that w measures the strength of the interaction. This
means the rod requires a larger edge load to buckle when the rod is sticking to the substrate with the stronger
interaction force.

When wy, is larger or smaller than w; the smallest D value where the rod will stick to the substrate
with smaller w is at a larger substrate separation D. From Figure 8, Figure 10, and Figure 12, we see that

branch 3 begins at a larger substrate separation as ws gets smaller. This can also be seen in in Figure 14
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and Figure 16, as branch 2 begins at a larger substrate separation D as wo gets larger. This likely occurs
because the rod, for relatively smaller substrate separations, can not get far enough away from the stronger
interaction to be at equilibrium in the branch 2 configuration, which is the configuration sticking to the
substrate with the lower w value. This can also explain the intervals of y values where for which there are
no equilibrium configurations, as is seen in Figure 7, Figure 9, and Figure 11. In these figures we see that
the larger constraining force is causing the rod to be forced into the branch 2 configuration. This means
at the substrate separations where the rod would equilibrate in the branch 1 configuration or the branch 3
configuration close to the top, it is not able. Once the substrate separation is large enough, the rod can
attain the branch 3 equilibrium configuration. This does not occur when ws is larger, as seen in Figure 13
and Figure 15. As the substrate separation increases, the rod goes from branch 1, between the substrates to
sticking to the top substrate. This means as the substrate separation increases, the vertical position of the rod
increases with it. Hence every vertical position has a substrate separation for which there is an equilibrium

solution.
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A MATLAB Code
Al F,—F,

function FIFu = AFunc(wl, sigmal, nl, n2, w2, sigma2, n3, n4)

Joupper substrate parameters

wl = 1;

sigmal = 1;

nl = 4;

n2 = 2;

Ylower substrate parameters
w2 = 2;

sigma2 = 1;

n3 = 4;

n4 = 2;

d = linspace (0,10,2000);

linspace (0,10,2000) ;

~<
Il

[Y,D]= meshgrid(y,d);

F = wl.=((sigmal ./Y)."nl — (sigmal./Y)."n2) — w2.x((sigma2./(D-Y))."n3 - (sigma2./(D-Y
))."nd);

L = contour(Y,D,F,[0 O0]); %produces a plot with values of y and D that satisfy 0 = FI
— Fu

end

A2 Hfunc

function H = Hfunc(B,A)

Jocalculates the values for Lambdas for given A and B

Lal = (1/sqrt(2)).xsqrt(—1.xB + sqrt(B."2-(4.%A)));
La2 = (1/sqrt(2)).xsqrt(—1.*B — sqrt(B."2—-(4.%xA)));
La3 = —(1/sqrt(2)).+sqrt(—=1.%*B + sqrt(B."2-(4.%A)));
Lad = —(1/sqrt(2)).«sqrt(—1.*B — sqrt(B."2-(4.%A)));

Ycalculates a value used to compute the hand derived P—inverse Matrix
star = ((—-4 .x Lal .x La4) + (2 .= Lal.”"3 ./ La4) + (2 . Lad4.”3 ./ Lal));

%calculates P Matrix

P = [(Lal) (La2) (La3) (La4);
(Lal.”2) (La2.72) (La3."2) (La4."2);
(A./Lal) (A./La2) (A./La3) (A./Lad);
111 17;

Jorow 1 of P inverse
Pvll ((-1.«xLa4 + Lal.”2 ./La4)./star);
Pvli2 = (((—-1.xLa4./Lal)+(Lal./La4))./(star));
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Pvli3 = ((-1.«La4 .x Lal.”2 + La4."3)./ (A.xstar));
Pvli4 = ((-1.«Lal.xLa4 + La4."3 ./Lal) ./(star));

Jrow 2 of P inverse

Pv21 ((Lal + -1.xLa4.”2 ./Lal)./star);

%Pv22 = —-Pvl2; ————— Doesn’t need to be calculated
Pv23 ((Lal .x La4.”"2 + —1.xLal."3)./ (A.xstar));
Pv24 = ((-Lal.xLa4 + Lal.”3 ./ La4) ./(star));

%ftind the P inverse matrix

%Pinv = inv (P);

Pinv = [Pvll Pvi2 Pvl3 Pvl4;
Pv21 —-Pv12 Pv23 Pv24;
—-Pv1ll Pvl2 -Pv13 Pvl4;
-Pv21 —Pv12 -Pv23 Pv24];

%find the diagonal matrixd
eD = [exp(Lal) 0 O O;

0 exp(La2) 0 O;

0 0 exp(La3) O;

0 0 0 exp(La4)];

%finds the M Matrix
M =P % eD % Pinv;

Jouses formula (91)
H = absM(2,1).=M(3,4) — M(2,4).«M(3,1));

end

A3 trackingLower MinWithA

% this creates a graph on the B and A axes given a range of A values and density
points .

% B(horizontal axis), (A vertical axis)

$s=2500; %size of matrix rows and columns
Bmin = 0; 9%minimum value of A

Bmax = 50; %maximum value of A

if (Bmin % 12.7) <=5

searchMin = 0; %lower bound is 0 if Amin is 10 or less
else

searchMin = Bmin = 12.7 -5; %lower bound when searching for first 0
end

searchMax = Bmin % 12.7 +5; % upper bound when searching for first 0

B= linspace (Bmin,Bmax,s); % A vector
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H = zeros(s,1); % H vector. Starts empty used to find o in a given B interval
Amin = zeros(s,1);% B Vector

dummy=0;

1=0;

i=1; %this loops is used to find the first 0O
A = linspace (searchMin ,searchMax ,s); %first interval for finding 0
9A = linspace (0,3,s);

for j=1:s

H(j)= Hfunc(B(i),A(j));
end
[dummy , I] = min(H); % dummy is the value of the min, [ is the index of min
Amin(1) = A(I); % assigns the value of the B value that gives the lowest H
i=2;
A = linspace (searchMin +.3,searchMax ,s);
for j=2:s

H(j)= Hfunc(B(i),A(j));
end
[dummy , I] = min(H); % dummy is the value of the min, I is the index of min
Amin(1) = A(I); % assigns the value of the B value that gives the lowest H
slope = ((Bmax— Bmin)/s)*50; %determines the interval in which to check for the next

0

%this loops is used to find the rest of the 0’s
for 1=3:s

A = linspace (Amin(i—1).Amin(i—-1)+slope ,s); %for finding lower zero

for j=1:s
H(j)= Hfunc(B(i),A(j));

end
[dummy , I] = min(H); % dummy is the value of the min, I is the index of min
Amin(i) = A(I); % assigns the value of the B value that gives the lowest H
end
plot(B,Amin, " . ") % plots the O on the B and A axes
BAtakesA = csapi(Amin,B) ;% makes interpolated function using A and B values determined

here
A4 Lplot

%Lplot is used to plot the Y and D values that correspond to 0 values of
%F1—-Fu

% used to change paramaters of FI and Fu

48



20

21

22

23

24

25

26

27

28

29

30

31

32

33

sigmal = 1;

nl = 4;

n2 = 2;

w2 = .5;

sigma2 = 1;

n3 = 4;

n4d = 2;

d = linspace (0,10,2000);

linspace (0,10,2000) ;
[Y,D]= meshgrid(y,d);

%F is used for Fl-Fu
F = wl.*((sigmal ./Y)."nl — (sigmal ./Y)."n2) — w2.x((sigma2./(D-Y))."n3 - (sigma2./(D-Y
))."nd);

L=contour (Y,D,F, [0 0]); %graphs when F is 0

contourTable = getContourLineCoordinates(L);%collects the Y and D coordinates from the
contour

Jocredit (Adam Danz (2021). getContourLineCoordinates

J%(https ://www. mathworks.com/ matlabcentral/fileexchange/74010—getcontourlinecoordinates
), MATLAB Central File Exchange. Retrieved November 13, 2021.)

coordinates=table2array (contourTable) ;%turns the collected coordinates from a table to

an array
s=size (coordinates ,1);

newY=zeros(s,1); %Y will need to be resized to remove the YD pairs not in the model

newD=zeros(s,1); %D will need to be resized to remove the YD pairs not in the model

A.5  adjustLplotCustom

Jremoves the YD pairs not in the model such as when D is larger than Y
Breakl =1;

Break2=772;

Break3=3794;

Break4=7393;

Break5=9492;

Break6=10946;

Ll lelerledledledledledledledledledledledledleledleledledlediedlededleedledledledledledledledledlededledlededleedledledle e S T3 )

% for i=1:Breakl %lst

% newY (i)= coordinates(i,3);
% newD(i)= coordinates (i,4);
% end
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%o
%
%o
%o

%o
%
%o
%o

%o
%
%
%o

%o
%
%
%o

%o
%o
%
%o
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for

end

for

end

for

end

for

end

for

end

for i

end

for i

end

for i

end

for i

end

i=Breakl +1:Break2 %2nd
newY (i)= coordinates (i,3);

newD(i)= coordinates (i ,4);

i=Break2 +1:Break3 9%3rd
newY (i)= coordinates (i,3);

newD(i)= coordinates (i ,4);

i=Break3+1:Breakd4d %4th
newY (i)= coordinates (i,3);
newD(i)= coordinates (i,4);

i=Break4 +1:Break5 %5th
newY (i)= coordinates (i,3);
newD(i)= coordinates (i,4);

i=Break5+1:Break6: %6th
newY (i)= coordinates (i,3);

newD(i)= coordinates (i,4);

=Break6:—1:Break5+1 %6th
newY (i) =[];
newD (i) =[];

=Break5:—1:Breakd4+1 %5th
newY (i)=[];
newD (i) =[];

=Break4:—1:Break3+1 94 th
newY (i)= [];
newD(i)= [];

=Break3:—1:Break2+1 %3 rd
newY(i)= [];
newD(i)= [];
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for

end

for

end

% fo
%
%

% en

% j=

%

i=Break2:-1:Breakl+1 %2nd
newY (i)= [I;
newD(i)= [];

i=Breakl:—1:1 %l st
newY (i)= [I;
newD(i)= [];

r i=1:Breakl %lst
newY (i)= coordinates (i,3);
newD(i)= coordinates (i,4);
d
Break3 +1;

% for i=Break4:—1:Break3+1 %4th

%
%o
%

% en

L Ledeetledldledledledledledledledledledledledlededledledledledlededledledledldledledledledledledlededledledledledledhedledbedledleeddeddedle

newY (j)= coordinates (i,3);
newD(j)= coordinates (i,4):
j=i+l;

d

%for plotting results
J%plot (newY ,newD, ’. ")
plot (newY ,newD)

A6 BD2

% makes a plot of B and D values

% used to change paramaters

wl = 1;
sigmal = 1;
nl = 4;
n2 = 2;
w2 = 2;
sigma2 = 1;
n3 = 4;
n4 = 2;

9mewY and NewD found

s=si

in different

ze (newY,1);

A=zeros(s,1);

%generates A values

for

i=1:s

corresponding to buckling

of A should match the parameters

using the Y and D pairs from adjustLplot
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end

B =

A(i)=AFunc2(newD (i) ,newY (i) ,wl,w2,sigmal ,sigma2,nl,n2,n3,n4);

zeros(s,1);

%finds A value in interpolated BA function and inserts the associated B

%value into B

for

end

i=1:s
B(i)=fnval (BAtakesA ,A(i));

Jf2=figure; %used to plot multiple graphs

for

end

i=s:—1:1

if B(i)>50 %ensures values is not larger than interpolated values
B(i)=[1;

newD (i) =[];

end

%f3=figure; %used to plot multiple graphs

plot (B,newD,  — ")

%plot (B,newD) Jused to plot multiple graphs
Joplot (B,newD,’ —.’) %used to plot multiple graphs
A7 AFunc2

function A = AFunc2(D,Y,wl,w2,sigmal ,sigma2 ,nl,n2,n3,n4)

A= wl./(Y) .*((n2.x(sigmal ./(Y))."n2) — nl.x(sigmal./(Y))."nl) +w2./(D-Y) .=((nd.x(

end

sigma2 ./(D-Y))."n4) — n3.x(sigma2./(D-Y))."n3);
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