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Abstract 

Traffic demands on the current infrastructure network is becoming more strained as populations 

migrate and increase, particularly in large cities. Therefore, city officials, transportation and traffic 

authorities and researchers, and city inhabitants themselves are always striving to find faster and 

more efficient means of transportation. With the rise of new technologies such as autonomous 

vehicles and drones, the applications for transportation are endless. Therefore, this paper will 

describe and explore the operations, and consequently the efficacy, of Personal Aerial Vehicles 

(PAV), also known as Urban Air Mobility (UAM). The machines, while still hypothetical, are 

being researched extensively by some of the most powerful and influential scientific and 

technological organizations today. This paper will not only describe PAVs and their operations, 

but also their ability to be operational in the complex world of a modern transportation network of 

a large city. The city chosen for this paper to study is Los Angeles, California. The overall 

conclusion is that, given a limited scope, PAVs could be very effective in decreasing travel times, 

traffic congestion, and air pollution, while not overwhelming the existing transportation network 

and air traffic control systems. 

 

Glossary 

PAV: Personal Aerial Vehicle 

UAM: Urban Air Mobility 

LA: Los Angeles 

LAX: Los Angeles International Airport 

FAA: Federal Aviation Administration 
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1. Introduction 

As long as there have been cities, they have been associated with traffic and congestion. With the 

rise of vast supercities in the 19th century, places like New York, Los Angeles, Chicago, London, 

Paris, Sao Paolo, Tokyo, and Shanghai are home to tens of millions of people, often in a very 

confined land area. The rise of vehicles, beginning with the railroad, then moving on to trolleys, 

interurbans, and finally cars and buses, has made the issue of navigating cities very difficult.  

 

Figure 1: Personal travel trends in the U.S. [14] 

Figure 1 describes the rise in population in the US, and the consequent growth in households, 

workers, drivers, vehicles, and miles traveled. In Los Angeles alone, the city has grown in 

population from 1,970,358 in 1950 to 3,979,576 in 2019 [19]. The growth of cities out into the 

suburbs has also lengthened commute times dramatically, increasing in LA alone from 54 minutes 

/day in 1980 to 66 minutes/day as of 2019 [20, 21]. Therefore, various options outside of cars have 

been explored for some time, particularly public transportation options like buses, trolleys, 

subways, and light rail. However, these options, although well established in LA, are not heavily 

utilized and do little to reduce travel times. In fact, as of 2000, the average commute time of a solo 

driver versus the average commute time of a city bus passenger was 11% shorter [20]. Therefore, a 

new method and mode of transportation should be discussed and analyzed. One proposed system 

is Urban Air Mobility (UAM), as defined by the National Aeronautics and Space Administration 

(NASA). UAM and its associated subcategories, sub-Urban Air Mobility (sUAM) and Regional 

Air Mobility (RAM) (as defined below by Figure 2), are a promising way to utilize new 

technologies in electric vehicles, lightweight materials, and autonomous operations to produce a 

new means of transportations in crowded urban cities. 
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Figure 2: The three parts of comprehensive air mobility [10] 

 

 

Figure 3: Current mode choice based on distances greater than 100 miles [14] 

Figure 3 demonstrates that for distances less than or equal to 300 miles, commercial airliners and 

other means of transportation (other than cars) make up approximately only 2-3% of personal trips. 

Therefore, there is certainly a market for additional means of transportation, as the existing options 

are usually excessively confined and expensive. UAM holds great promise as an affordable, safe, 

time-saving, and environmentally friendly mass transportation option for the City of Los Angeles. 

2. Current and Proposed PAV Technology 

a. Description 

A visualization of a current PAV prototype is shown in Figure 5, with its typical 

dimensions and performance qualities being described in Table 1. Additionally, Figure 

4 provides a flow chart of the historical development of PAVs. PAVs are not currently 
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envisioned as being like a “flying car”, as is often depicted in science fiction and 

movies. A true “flying car” configuration would be fully operational driving and flying 

virtually any payload in any conditions. This scenario is currently out of the scope of 

nearly all models of PAVs, as it would make handling and operating these vehicles 

inordinately difficult, both at personal and traffic control levels. Therefore, the best and 

most efficient model for optimal operations that is being considered is a ride-serving 

mode that would function like an on-demand service like Uber™ or Lyft™. Using an 

app, passengers would reserve seats on an available vehicle at a specific time. Then the 

passenger would transport themselves to a vertiport, the designated takeoff and landing 

location for that particular craft. After a short boarding process (including a security 

screening), the passenger can board the vehicle and begin their journey. This entire 

process is illustrated by Figures 6-10.  

 

 

Table 1: Specification for a reference UAM vehicle [13] 
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Figure 4: Chronological development of PAV vehicles [11] 

 

Figure 5: Proposed model of a PAV (the Carter Slowed Rotor Compound Aerial Vehicle) [9] 
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Figure 6: Visual diagram of the competing transportation systems in Los Angeles [4] 

 

Figure 7: General diagram of day-to-day operation [1] 
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Figure 8: Operation schematic of a typical PAV flight [6] 

 

Figure 9: Visualization of the various UAM operating configurations [11] 
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Figure 10: Conceptual rendering of a UAM vertiport [17] 

Table 2 describes the various components of a UAM network and how they are categorized. 

It can be seen that the first steps in designing a viable network are determining the vertiport 

capacity, the vertiport locations, and the vertiport operational constraints. After these 

results have been determined, then more ambitious goals can be obtained, such as fleet size 

and the basic UAM route network. Lastly, a comprehensive fleet management policy must 

be developed to ensure smooth operations. 

 

Table 2: UAM system design variables and types [3] 

One important aspect that undoubtedly make UAM operations especially attractive to 

traffic planning and air traffic control authorities is its potential for autonomous flight 

and handling. Currently, most research anticipates that fully autonomous UAM 

operations are quite some time from happening, but will continue to explored. Figure 

11 provides some visualization for the process necessary for autonomous UAM 
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operations to be realized. However, for the forseeable future, a human pilot will be 

needed to ensure a safe and secure flight.  

 

 

Figure 11: Visual diagram of the progress of autonomous PAVs [12] 

Table 3 provides a very comprehensive look into the resources, operations, policies, and 

economics (ROPE) needed in a UAM network, both for the vertiports and the vehicles 

themselves. The Greek letters α, β, γ, and δ represent the consecutive levels of development 

needed for a fully operational UAM system.  
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Table 3: A Resource, Operation, Policy, and Economic (ROPE) table for UAM [7] 

 

b. Operational Capabilities 

The operational capabilities of any UAM network are determined first by the demand, 

and then by the number of vehicles purchased and made operational at any given time. 

Figure 12 gives a schematic of a typical cycle of operation for a single PAV. 
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Figure 12: Vertiport structure and operational flow [3] 

 

Figure 13 presents a fascinating model that predicts the optimal UAM fleet size, using 

the Bay Area as a case study. Although the results cannot be directly carried over to 

Los Angeles, it is nonetheless a good starting point for estimation purposes. The model 

also gives an estimation for minimizing cost, although the numbers associated with 

Figure 13 are reflected not just in personal transportation cost, but all of the associated 

spending required to install and maintain the required UAM infrastructure. 
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Figure 13: 3-D model optimization graph, with the optimal operating point shown in 

red [3] 

 

Figure 14 shows the percentages of UAM flights that can be handled by existing air 

traffic control systems and personnel. With modifications to the UAM network routes, 

virtually all UAM flights (95-99%), even at a high volume, can be handled with the 

existing air traffic control infrastructure, although these percentages drop significantly 

if the proper modifications are not taken. 
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Figure 14: Effects of modification of UAM operations and expectations [5] 

 

Figure 15 describes the Small Air Transport System (SATS) model, a European-led 

semi-autonomous network that would allow for unprecedented levels of efficiency and 

speed in air traffic control. 
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Figure 15: Diagram showing the air traffic control process for UAM operations [11] 

 

Figure 16 shows a collection of useful ideas, technologies, and hypotheses for PAVs 

that are being currently considered, as well as their application to a UAM scenario. 

Although not all of these aspects could or even should be implemented in the near 

future, it is beneficial to consider them as areas to research and consider in the future. 
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Figure 16: Summary of elements involved in UAM operation [11] 

 

Last, but certainly not least, safety considerations must be analyzed. Safety is one of 

the biggest concerns that prospective passengers of PAVs have. Table 4 breaks down 

their top concerns, with 84% concerned about equipment and safety failure, and 82% 

concerned about accidents in the air. Security issues are also important to prospective 

passengers, with 70% concerned about security against hackers or terrorists, and 67% 

concerned about personal information privacy. These concerns are very valid, and have 

not been fully addressed in any of the current research. However, as a general rule, 

commercial aviation is the safest form of mass transportation available today. Figure 

17 shows that an individual is 104 times safer in an airplane than a car, 3 timer safer in 

an airplane than urban mass transit rail, and twice as safe in an airplane then a bus. 

Although these figures for aviation safety might be lowered slightly for UAM 
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operations, it will be still be substantially safer than all existing terrestrial 

transportation. 

 

 

Figure 17: Comparison of passenger fatality rates between various modes of 

transportation [11] 

 

 

Table 4: Survey results about safety- and security-related benefits and concerns [2] 

 

c. Limitations 

Although UAM seems like a viable and attractive option for public transportation in 

Los Angeles, there are drawbacks to their implementation. These drawbacks are 

summarized below in Table 5.  



20 
 

 

Table 5: A compiled list of barriers to entry along with scenarios enabling viability [1] 

 

Another criticism of UAM is the potential for inefficient use of time. Although on-

demand scheduling of UAM flights seeks to mitigate this problem, it would be very 

difficult and expensive to adopt a fully on-demand service without a predictable and 

extensive flow of passengers. Therefore, some combination of on-demand scheduling 

and pre-defined scheduling would most likely be adopted. Figure 18 gives a breakdown 

of the typical time spent on a commercial airline flight. UAM flights would seek to 

minimize terminal and wait times, but access and egress times (the time spent coming 



21 
 

to and from the flight access point) might be increased based on the number of 

vertiports constructed and their location. 

 

 

Figure 18: Average commercial airliner door-to-door time breakdown [14] 

 

The final drawback to implementing UAM is the potential for increased day-to-day 

costs for the average passenger, especially compared with existing ground-based ride-

sharing services. These concerns are reflected in preliminary studies, as shown in 

Figure 19. However, over 60% of passengers would see a daily cost increase of only 

up to $1 and just under 40% would see an increase of up to $3, which even taken 

annually are not significant cost increases. This study, however, does not take into 

consideration the large capital costs that would be needed to install and maintain the 

initial UAM network; therefore, the average cost to the consumer might rise somewhat, 

but that rise is difficult to quantify as of now. 
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Figure 19: Expected consumer cost increases for PAVs compared to traditional ride-sharing 

services [16] 

3. Existing Conditions 

a. Selection Reasons 

Los Angeles was chosen to as the ideal location for studying UAM operations for this 

paper. The first reason was size. Any potential UAM market would require a significant 

amount of potential users, and therefore the larger the market, there would be a 

theoretically larger demand. Numerous studies have estimated the future market share 

of PAVs at 4% [7], which when taken with the existing LA commuter population of 

over 800,000 [22], could lead to a demand of over 32,000 passengers per day.  

 

The second reason was congestion. LA is the most congested city in the U.S., according 

to Figure 20, with a Roadway Congestion Index (RCI) value of almost 1.6, significantly 

above the maximum preferred RCI value of 1.0. Figure 21 shows the increasing rate of 

annual LA delay per commuter; the current data (as of 2017) shows that the average 

LA commuter endures over 119 annual hours of traffic delay, over 6.1 hours of 

congested weekday hours, over $2,676 annually in costs related to congestion, and 

wastes over 35 gallons of gasoline annually. This accumulates to totals of 971,478,000 

of annual delay, $19,490,000,000 of annual congestion cost, and 256,931,000 gallons 

of fuel wasted annually [23].  
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Figure 20: Roadway Congestion Index (RCI) across major American cities [10] 

 

 

Figure 21: Average annual delay per commuter in Los Angles [23] 

 

The third reason was commute times. LA is notorious for its commute times, which are 

directly tied not only to its congestion, but the sprawling geographical layout of the city 

and its suburbs. Figure 22 gives a visual representation of the average commute times 

in discrete sections of the LA metro area. It is important to note, however, that these 

times are average commute times in general, not average commute times to the Central 

Business District (CBD) or other high-traffic areas.  
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Figure 22: Average commute times in Los Angeles area cities [20] 

 

The fourth reason is a robust and diverse public transportation system already in 

existence. Although most people drive alone in their cars to work, almost 10% of the 

city’s commuter population uses public transit, according to Figure 23. Both this 

population and extra-long commuters might be very interested in a faster and more 

streamlined method transportation. 

 

Figure 23: Means of work-related transportation in the City of Los Angeles [20] 

 

The fifth reason is environmental factors. LA is famous for its mild, dry, and sunny 

climate year-round, which would significantly reduce complications with air travel. 

Figure 24 presents typical weather data for Downtown LA. 
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Figure 24: Downtown Los Angeles climate data [24] 

 

Figure 25 shows that the greatest concern that potential users have is encountering 

inclement weather while using a PAV. The relatively placid climate of LA would 

certainly mitigate those fears, and would help with attracting investors. 

 

 

Figure 25: Perceived concerns with PAVs [16] 

The sixth and final main reason for choosing LA as the ideal site for implementing 

UAM as a viable public transportation option is environmental pollution and climate 

change. LA is rated is one of the worst emission source areas in the U.S., producing 

nearly 13.5 million tons of CO2 gas per person per year, with almost one-third of those 

emissions coming from transportation uses [25]. UAM has the potential to reduce those 

emissions by relying on electric power. PAVs have the potential to reduce greenhouse 
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gas emissions by 52% relative to internal combustion engine vehicles and 6% relative 

to ground-based electric vehicles [6].  

b. Current Capabilities and Constraints 

Figure 26 describes the restricted airspace in Los Angeles, particularly around Los 

Angeles International Airport (LAX). Figures 27 and 28 describe the high and low 

altitude-permitted air sector areas as well. Figure 29 combines the information from 

Figures 27 and 28 to produce a visual representation of the air traffic around LA. 

 

 

Figure 26: LA restricted airspace map [18] 
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Figure 27: LA high-altitude airspace map [27] 
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Figure 28: LA low-altitude airspace map [27] 

 

Figure 29: Air traffic flow around restricted areas in LA [27] 
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4. Analysis 

Figures 30 and 31 show how transportation nodes, existing points of interest, and existing 

airports, airfields, and helipads influence the placement of PAV stations and the subsequent 

UAM networks in a hypothetical model. 

 

 

Figure 30: Hypothetical map showing the influence of existing infrastructure on vertiport 

placement [8] 
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Figure 31: Hypothetical map showing the visualization of a UAM network structure 

based off of UAM station placement [8] 

 

One case study in 2017 sought to realistically model UAM demand and networks based on 

the population distribution and socioeconomic factors present in the LA metro area. Their 

findings are presented below in Figures 32 and 33.  
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Figure 32: Population distribution in LA [26] 
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Figure 33: UAM model results in LA [26] 
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Table 6: Summary of the UAM model flights shown in Figure 33 [26] 

Based off of Table 6 (which lists the most probable production and attraction zones for 

UAM operations), the optimal locations for potential vertiports can be assumed.  

5. Conclusion 
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Figure 34: An Ishiwaka diagram for UAM vehicle development [11] 

 

Figure 35: Steps to development for UAM operations [12] 
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Figure 36: Various scenarios in which individuals would be willing to use PAVs [16] 

 

Figure 37: Perceived benefits of PAVs [16] 
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Figure 38: Contrast in preferences between piloted and autonomous PAVs [16] 
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