Investigating the morphology of ipRGCs in control vs. glaucomatous retinas

Samantha Cook
skc35@zips.uakron.edu

Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects

Part of the Animal Experimentation and Research Commons, and the Eye Diseases Commons

Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository.

Recommended Citation
Cook, Samantha, "Investigating the morphology of ipRGCs in control vs. glaucomatous retinas" (2020). Williams Honors College, Honors Research Projects. 1249.
https://ideaexchange.uakron.edu/honors_research_projects/1249

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College, Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.
Glaucoma is a build-up of pressure in the eye that leads to the gradual loss of sight. The intention of this study was to investigate how glaucoma affects intrinsically photosensitive Retinal Ganglion Cells (ipRGCs). These cells contain melanopsin, a photopigment, that enables the cells to react to light. Four-month-old control and five-month-old glaucoma mice retinas were dissected, stained using primary and secondary antibodies, then traced using ImageJ’s Simple Neurite Tracer. There were no significant differences in soma size, total dendritic length, dendritic field size, and dendritic field diameter between control and glaucoma ipRGCs. However, further research is needed to provide conclusive evidence regarding glaucoma’s effects on retinal cells.