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1. Abstract 

 In nature, the segregation of granitic melts at the source may be controlled by fabric and 

compositional heterogeneities in the source rock, such as foliation and lineation. To investigate 

the influence of foliation/lineation orientation and composition on rock strength and melt 

interconnectivity, I performed a series of experiments on cores of a fine-grained gneiss (Gneiss 

Minuti) and a fine-grained muscovite-bearing quartzite (Moine Thrust quartzite). These rocks 

were cored at six primary orientations parallel, 45 degrees, and perpendicular to the foliation and 

lineation and were deformed at a constant temperature of 900°C, pressure of ~2 GPa, and strain 

rate of ~10-6/s using the D-DIA apparatus at Beamline 6-BMB at the Advanced Photon Source at 

Argonne National Laboratory. 

 Strengths of the Gneiss Minuti cores varied from 1.02 to 1.17 GPa, and strengths of the 

Moine Thrust quartzite ranged from 1.28 to 1.61 GPa. The strength anisotropy of the cores 

relative to the core with the foliation oriented 45 degrees to the compression direction varied 

from 0.87 to 1.99 in the Gneiss Minuti cores and ranged from 0.59 to 2.13 in the Moine Thrust 

quartzite cores. Melt was present in all cores, and concentrations varied from 1 to 4 vol% for the 

Gneiss Minuti and from 0.6 to 1.2 vol% for the Moine Thrust quartzite. The Gneiss Minuti and 

Moine Thrust quartzite cores had similar melt topology in all foliation orientations with small 

melt channels/pockets parallel to the compression direction, and the only significant melt 

interconnectivity was observed in the Gneiss Minuti foliation/lineation parallel to the 

compression direction sample, which also had the largest melt fraction (3.74 vol%). These results 

indicate that when above a low melt content (~1 to 2 vol%), the presence of melt has a greater 

effect than the orientation of foliation and lineation on the strength of foliated rocks and melt 

migration. 

 

2. Introduction 

Earthquakes that occur in the brittle upper crust are linked to the middle and lower crust 

by the transferring of stresses to the lower crust after slip events. Following this transfer of 

stresses, the rheology of the middle to lower crust can affect aftershock intensity (Bürgmann and 

Dresen, 2008). To explore this concept, experimental studies are performed in the laboratory to 

simulate naturally occurring processes that cannot be observed evolving on human timescales. 

Models such as Bürgmann and Dresen (2008) incorporate experimentally derived rheologies of 
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isotropic monophase rocks for the middle to lower crust. However, the middle to lower crust is 

usually composed of rocks with heterogeneities such as foliations and lineations.  

Heterogeneities in crustal rocks, such as foliation (planar rock features) and lineation 

(linear rock features), are known to influence the strength of the crust depending on their 

orientation within the source rock causing strength anisotropy in both brittle and ductile 

conditions (Gottschalk et al., 1990; Braccia and Holyoke, 2019). In foliated rocks that undergo 

brittle deformation, the strength is usually the greatest when the foliation is perpendicular to the 

compression and the least when the foliation is at 45 degrees to the compression (Gottschalk et 

al., 1990). These orientations correspond to placing the foliation at orientations that minimize 

and maximize the shear stress on the foliation, respectively. Comparatively, foliation/lineation 

orientation under ductile (crystal plastic) conditions, simulating deformation in the middle to 

lower crust, also appears to influence the strength of rocks. Braccia and Holyoke (2019) 

performed experiments on a quartzite (87% quartz and 13% muscovite) at conditions with no 

melt present and where the dominant deformation mechanism is dislocation creep (T = 800°C 

and Pconfining = 1.5 GPa). They found that foliation, and more so lineation orientation, creates 

strength anisotropy. Dislocation creep is a common deformation mechanism in the mid to lower 

crust that involves the propagation of linear defects along specific crystallographic planes and 

axes, and the viscous anisotropy described above is a result of this mechanism’s sensitivity to the 

orientation of crystal planes and axes relative to the compression direction. This viscous 

anisotropy under crystal plastic conditions is also seen in other Earth materials, such as olivine 

aggregates, where strength differences are generated from the formation of crystallographic 

preferred orientations (Hansen et al., 2012). These prior studies indicate that the strength in both 

the upper and lower crust will be anisotropic, but all of these experiments were performed in the 

absence of syntectonic metamorphic reactions. 

Syntectonic metamorphic reactions, including partial melting, have a significant 

weakening effect on the strength of rocks by disrupting the framework that supports the applied 

tectonic loads (Dell ‘Angelo and Tullis, 1988; Holyoke and Rushmer, 2002; Brown, 2007). Dell 

‘Angelo and Tullis (1988) observed that partial melting can decrease the strength of granitic 

aggregates (natural and synthetic aplites) by changing the dominant deformation mechanism 

from dislocation creep to diffusion creep (diffusion of atoms along grain boundaries from high 

stress sites to low stress sites), or cataclasis (fracturing of grains throughout the aggregate). In 
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addition, the composition of rocks and/or melting reactions can affect the operating deformation 

mechanisms. Composition controls melting reactions, melt viscosity, and how readily melt 

channels and pockets can interconnect and segregate from source rock (Rushmer, 2001). 

Composition can also influence deformation through the volume changes that occur in the 

transition of solid material to melt plus solids (Rushmer, 2001; Holyoke and Rushmer, 2002). 

Field based observations indicate that melt interconnection and segregation might also be 

affected by rock fabric heterogeneities, such as foliation and lineation (Brown, 2007). In this 

study, I will investigate the influence of foliation/lineation orientation and partial melting on rock 

strength evolution as well as examine the effects of foliation/lineation and source rock 

composition on melt migration. 

 

3. Procedure 

3.1 Starting Materials 

 In order to investigate the influence of foliation/lineation orientation and partial melting 

on rock strength and melt segregation, I cored and deformed two naturally occurring foliated 

rocks: the Gneiss Minuti collected in Nivetta, Italy (Zurbriggen et al., 1998) and the Moine 

Thrust quartzite collected from the sample location AS-3 of the Allt nan Sleach section of the 

Assynt exposure of the Moine Thrust in Eriboll, Scotland (Law et al., 1986). The Gneiss Minuti 

is a natural, fine-grained gneiss consisting of 43% quartz, 40% plagioclase, 16% biotite, and 1% 

other phases with an average grain size of 30 ± 16 microns (Figure 1). The foliation in the Gneiss 

Minuti is defined by aligned biotite grains isolated in a framework of quartz and plagioclase. The 

Moine Thrust quartzite, is a natural fine-grained quartzite composed of quartz and muscovite 

with an average grain size of 33 ± 14 microns (Braccia and Holyoke, 2019) (Figure 2). The 

muscovite in the quartzite defines the foliation and is generally, isolated in a quartz framework. 

These rocks were selected because they should undergo dehydration melting reactions and form 

granitic melts at the conditions of this study (Rushmer, 2001). 

3.2 Experimental Techniques  

 Experiments for this study were performed by deforming stacked cores of the Gneiss 

Minuti or the Moine Thrust quartzite using the D-DIA apparatus at Beamline 6-BMB at the 

Advanced Photon Source at Argonne National Laboratory (Lemont, IL). The rocks were cored, 

while submerged in water, into cylinders roughly 1.2 to 1.3 mm in length and 1.5 mm in 
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diameter using a milling machine and diamond core bit. Each rock was cored in six primary 

orientations parallel, 45 degrees, and perpendicular to the respective foliation and lineation 

(Figure 3). The orientation of the foliation and lineation will be referred to in the format: F*- L* 

where F is the angle between the foliation to the compression direction and L is the angle 

between the lineation to the compression direction (Figure 3). The D-DIA assembly used in these 

experiments is a series of concentric hollow cylinders of boron nitride, graphite, and alumina 

placed in a fired pyrophyllite cube (Figure 4). Crushable alumina pistons were placed above and 

below the two stacked cores that were separated by a layer of garnet and foils of rhenium and 

platinum, which were used to identify the ends of the cores in the x-radiographs. The cores were 

also surrounded by a platinum jacket to chemically isolate them from the surrounding assembly. 

 The experiments were performed using a D-DIA apparatus (Wang et al., 2003), which 

uses a six-anvil cubic arrangement (five tungsten anvils and one sintered diamond anvil) to apply 

equal pressure around a cubic sample. Power to heat the assembly is applied via the upper and 

lower anvils that are in contact with the ends of the graphite furnace. The upper and lower anvils 

are also advanced independently of the other four anvils to apply a load to the stacked cylinders. 

In this study, all the assemblies were deformed at a constant temperature of 900°C, pressure of 

2.04 ± 0.28 GPa, and strain rate of ~10-6/s. During deformation, radiographs of the stacked cores 

and x-ray spectra from the alumina pistons above and below the stacked cores were collected to 

determine strain, strain rate, pressure, and differential stress. 

3.3 Analytical Techniques 

 After reaching the desired strain, the assemblies were quenched to room temperature over 

a period of two minutes and slowly depressurized over a two-hour period. The deformed samples 

were impregnated with epoxy and cut in half to the compression direction and perpendicular to 

the strike of the foliation. These sample halves were ground using 3.0-micron silicon carbide grit 

and polished using 0.3-micron Al2O3 grit. The polished samples were then analyzed using the 

scanning electron microscope (SEM) with energy-dispersive X-ray spectroscopy (EDS) at the 

Department of Geosciences at the University of Akron (Akron, OH). After SEM analysis, double 

polished thin sections were made by attaching a polished sample half to glass with epoxy. The 

sample was ground and polished on the glass until it reached the desired thickness of ~30 

microns. These thin sections were used for optical analysis under a petrographic microscope to 
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characterize their optical scale microstructures that help determine the dominant deformation 

mechanisms. 

 Mechanical data was analyzed using radiographs of the stacked cores and x-ray spectra 

collected from the alumina pistons during deformation. The strain and strain rate of each 

orientation to the foliation and lineation for both the Gneiss Minuti and Moine Thrust quartzite 

were determined by measuring the change in core lengths in the in-situ radiographs using ImageJ 

(Figure 5). The pressure and differential stress of each assembly of stacked cores was calculated 

from the changes in the peak positions of lattice planes located on the collected x-ray spectra 

from the top and bottom alumina pistons during deformation (Figure 6). These calculations were 

performed using the computer programs PLOT85, Python, and Polydefix. In addition to 

mechanical data, microstructural and melt volume analysis was also performed using SEM 

imaging and by analyzing thin sections under a petrographic microscope or SEM to determine 

grain size and melt topology. Individual grains and melt pockets/channels were traced from these 

SEM images and various parameters, such as area and diameter, were determined using Adobe 

Photoshop and ImageJ. For this study, I define melt pockets as areas of melt between grains that 

have a low aspect ratio and melt channels as areas of melt with a high aspect ratio (Figure 7). 

However, the difference between melt pockets and channels is more qualitative. Thin sections of 

the Gneiss Minuti and Moine Thrust quartzite were also analyzed under cross-polarized light to 

characterize the optical microstructures produced by the dominant deformation mechanisms that 

operated during the experiments.  

 

4. Results 

4.1 Mechanical Data 

4.1.1 Gneiss Minuti 

 Four sets of stacked Gneiss Minuti cores were deformed using the D-DIA apparatus at a 

constant temperature (T) of 900°C, pressure (P) of 1.90 ± 0.25 GPa, and (𝜀̇) strain rate of ~10-6/s 

(Table 1). Total strains of the cores ranged from 19% to 45% (Table 1 and Figure 8). In all the 

experiments, differential stresses increased rapidly over the first ~10% strain then deformed at a 

relatively constant stress (Figure 9). The average differential stress for all four experiments 

ranged from 1.01 to 1.17 GPa during constant stress deformation.  
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4.1.2 Moine Thrust Quartzite 

 Three stacked cores of the Moine Thrust quartzite were deformed using the D-DIA 

apparatus at similar conditions as the Gneiss Minuti experiments (T = 900°C, P = 2.22 ± 0.26 

GPa, and (𝜀̇) = ~10-6/s) (Table 1). The total strains of the quartzite cores ranged from roughly 

16% to 45% (Table 1 and Figure 10). The differential stresses increased rapidly over the first 

~10% strain then deformed at a relatively constant stress. The average differential stress ranged 

from 1.28 to 1.61 GPa during constant stress deformation (Figure 11).  

4.2 Microstructures 

4.1.1 Gneiss Minuti 

 Deformation throughout the Gneiss Minuti cores were homogenous (Figure 12). Optical 

microstructures in the quartz and plagioclase of the samples includes undulatory extinction and 

deformation lamellae, and no evidence of brittle behavior was observed. Biotite grains 

sometimes had kinks or were sheared depending on their orientation relative to the compression 

direction. 

 Melt was present in all cores and was located in a mixture of melt pockets and channels 

cutting through single grains and along grain boundaries parallel to the compression direction 

regardless of foliation and/or lineation orientation. The melt concentration in the cores of Gneiss 

Minuti ranged from roughly 1 to 4 vol% (Table 1). Composition of the melt was analyzed using 

energy-dispersive X-ray spectroscopy (EDS), and the melt contains Si, Al, Ca, Na, and K (Figure 

13). All cores with foliation oriented 45 degrees and perpendicular and most cores parallel to the 

compression direction had similar melt contents (~1 to 3 vol%) and show similar melt topology 

(Table 1 and Figure 14). Melt was observed as channels crossing and connecting the length of 

single grains in all cores with foliation oriented 45 degrees and perpendicular and in two cores 

with foliation oriented parallel (Figure 14). In one of the foliation parallel cores (F0-L0), the core 

which also had the highest melt fraction, melt was observed in channels that extended along 

several grains (Figure 15).  

4.1.2 Moine Thrust Quartzite 

 Deformation in the Moine Thrust quartzite was relatively homogenous, but localization 

along muscovite-rich bands did occur in the core with foliation 45 degrees to the compression 

direction (Figure 16). Optical microstructures observed in quartz included undulatory extinction, 
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deformation lamellae, and grain boundary bulging, and the muscovite grains were sometimes 

kinked or sheared (Figure 16). 

Melt topology and concentration was also determine in the Moine Thrust quartzite 

samples. At T = 900°C, melt content within these samples ranged from 0.6 to 1.2 vol%, and 

distinguishable melt was observed in the quartzite samples regardless of the orientation to 

foliation and/or lineation. All the cores had a similar melt topology of small, scattered melt 

pockets vertical to the compression direction (Table 1, Figure 17, and Figure 18). However, these 

pockets were usually not evenly distributed and were random throughout the sample with some 

localization seen in the outer portions of the cores. EDS was not performed for the Moine Thrust 

quartzite samples because the present melt pockets/channels were too small to collect accurate 

results. 

 

5. Discussion 

5.1 Microstructures 

At a T = 900°C, P = ~2 GPa, and  𝜀̇ = ~10-6/s, the framework of both the Gneiss Minuti 

and the Moine Thrust quartzite deformed by crystal plastic mechanisms. The microstructures 

included undulatory extinction and deformation lamellae in the quartz and plagioclase in the 

Gneiss Minuti as well as undulatory extinction, deformation lamellae, and grain boundary 

bulging of the quartz in the Moine Thrust quartzite (Figure 12 and Figure 16). The biotite and 

muscovite from each rock, respectively, were sometimes kinked or sheared. These 

microstructures are consistent with deformation by dislocation creep (Hirth and Tullis, 1992). 

Some of these microstructures were seen in the starting material, such as undulatory extinction in 

the Gneiss Minuti and undulatory extinction/grain bulging in the Moine Thrust quartzite; 

however, they were more exaggerated and frequent following deformation. Additionally, the 

deformation lamellae were only observed in the deformed samples for both rocks. Moreover, 

deformation was homogenous in all the cores except the Moine Thrust quartzite F45-L45 core, 

where strain localized along bands of interconnected muscovite (Figure 16).  

5.2 Melt topology 

Melt present within all the Gneiss Minuti samples appears to have a similar melt topology 

of scattered melt pockets and vertical, single grain length melt channels regardless of the 

foliation and/or lineation orientation (Figure 14). The presence of melt channels cross-cutting 
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grains within the samples indicates brittle behavior likely induced by high local melt pore 

pressure. The siliceous nature of the Gneiss Minuti melt, which is similar to that of a granitic 

composition, likely caused high local pore pressure that induced vertical cracking through grains 

because the extremely viscous melt could not migrate fast enough along grain boundaries to 

relieve this pore pressure. The only sample to show interconnected melt channels across multiple 

grain boundaries is the F0-L0 sample (Figure 15). This sample has the largest melt content 

(3.74%) of all the samples in both the Gneiss Minuti and the Moine Thrust quartzite (Table 1). 

All orientations of the Moine Thrust quartzite, similar to the cores of Gneiss Minuti, had similar 

melt topology with melt fractions ranging from 0.6 to 1.2 vol% (Table 1, Figure 17, and Figure 

18). The melt, however, was usually only observed in small, scattered pockets with occasional 

vertical melt channels. These results from both the Gneiss Minuti and Moine Thrust quartzite 

suggest that foliation and/or lineation orientation does not have a significant effect on melt 

interconnectivity, but rather melt fraction plays a larger role in melt interconnectivity, 

segregation, and migration. 

Differences in composition between the Gneiss Minuti and Moine Thrust quartzite likely 

caused the difference in viscosity and melt fraction of the two rocks. At the conditions of the 

experiments, I expected the Gneiss Minuti (Eq. 1) and Moine Thrust quartzite (Eq. 2) to form 

melt by the reactions:  

                  𝐵𝑡 + 𝑄𝑡𝑧 + 𝑃𝑙 → 𝑀𝑒𝑙𝑡 + 𝐺𝑡 + 𝑂𝑝𝑥 + 𝐾𝑓𝑠        Eq. 1 

and 

             𝑀𝑢𝑠 + 𝑄𝑡𝑧 → 𝑀𝑒𝑙𝑡 + 𝑆𝑖𝑙 + 𝐵𝑡 + 𝐾𝑓𝑠                   Eq. 2 

where Bt is biotite, Qtz is quartz, Pl is plagioclase, Gt is garnet, Opx is orthopyroxene, Kfs is 

potassium feldspar, Mus is muscovite, and Sil is silica. These reactions cause a vol% increase of 

30% and ~7% (Rushmer, 2001), respectively, which caused cataclastic behavior in the Holyoke 

and Rushmer (2002) experiments. My experiments were performed at similar temperatures to 

their study but at higher pressures; this difference of pressure likely affects the melt reaction, 

causing lower melt fractions as observed in my experiments (Table 1). A lower melt fraction 

means lower pore pressure or more limited zones of high pore pressure. The high pressure in my 

experiments also inhibits brittle behavior and makes the dislocation creep of quartz easier (Tullis 

and Yund, 1977; Hirth and Tullis, 1994). The absence of the solid by-products and cataclastic 
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behavior in this study indicates that the melting reaction in the samples may be wet melting, 

rather than the predicted reactions. 

5.3 Viscous Anisotropy 

The relative strengths between the foliation/lineation orientations within the Gneiss 

Minuti and the Moine Thrust quartzite under crystal plastic conditions were determined by 

investigating the viscous anisotropy between all the cores. Each core was deformed at a slightly 

different combination of strain rate (𝜀̇) and differential stress (σdiff), so direct comparison is not 

possible, unless we compare viscosity. The viscosity (η) can be found for each core orientation 

using stress and strain data collected during deformation in the equation: 

𝜂 =
𝜎𝑑𝑖𝑓𝑓

�̇�
                    Eq. 3 

where η is the viscosity (GPa*s), σdiff is the differential stress (GPa), and 𝜀̇ is the strain rate (1/s). 

An absence or decrease of viscous anisotropy between the orientations indicates that melt 

formation dominates the strength of the rock; however, if the cores are significantly different in 

viscosity, the foliation/lineation present within the rock is still controlling the overall strength. 

All cores of the Gneiss Minuti except one (F0-L45) have similar viscosities (~2*104 

GPa*s) and the melt content within these cores ranges from 1 to 4 vol% (Table 1 and Figure 19).  

However, the viscosity of the F0-L45 core is almost twice that of the other Gneiss Minuti cores 

with different orientations (Figure 19 and Figure 20). The melt content in this core is lower than 

most of the other cores (1 vol% vs. >2 vol%), which suggests that foliation and/or lineation still 

controls the strength of this core, and melt is controlling the strength in the other cores with 

higher melt contents (Table 1). However, the F0-L90 core, which also has a low melt content 

(1.1%) has a similar viscosity to the cores with higher melt contents.  

Not all orientations of the Moine Thrust quartzite cores have similar viscosities, but the 

melt contents of these cores are more consistent (0.6-1.2 vol%) than those in the Gneiss Minuti 

(1-4 vol%). The general pattern of viscosities is consistent with rocks that show viscous 

anisotropy. The core in the F90-L90 orientation is the strongest with those of foliation 45 degrees 

being weakest and those with the foliation parallel intermediate in strength; there is an exception 

with the core in the F0-L0 orientation, which is the weakest of all the cores (Figure 19 and 

Figure 20). This more pronounced viscous anisotropy and low melt content within the quartzite 

suggests that foliation and/or lineation still had some influence on the rock strength, which 
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explains why the F90-L90 core, typically the strongest foliation/lineation orientation, shows a 

much larger viscosity than the cores at other orientations (Figure 20).  

The results from both the Gneiss Minuti and Moine Thrust quartzite experiments indicate 

that the influence of foliation and/or lineation orientation on strength is negligible at melt 

fractions greater than 2 vol%. The decrease in viscous anisotropy as melt is introduced to the 

system is likely linked to how partial melting has been observed to disrupt the framework within 

source rock that supports applied loads (Rushmer, 2001). 

  

6. Conclusions 

To investigate the influence of foliation/lineation orientation and partial melting on rock 

strength evolution as well as examine the effects of foliation/lineation and source rock 

composition on melt migration, cores of the Gneiss Minuti and the Moine Thrust quartzite were 

deformed at six primary orientations parallel, 45 degrees, and perpendicular to the foliation and 

lineation. The results indicate that in rocks with a melt fraction greater than ~1 to 2 vol%, the 

influence of the orientation of foliation and lineation on rock strength begins to decrease (i.e., 

rock strength becomes isotropic). In addition, foliation and lineation orientation have less of an 

influence on granitic melt interconnectivity than melt fraction. 
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Figure 1. Gneiss Minuti block showing the lineation, L (A), which lies on the foliation plane, S, 

(plane parallel to page in A, plane perpendicular to page in B). Scale is in millimeters (#10 = 10 

mm). The starting material is composed of quartz, plagioclase, and biotite (C). 
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Figure 2. Moine Thrust quartzite block showing the lineation, L (top image), which lies on the 

foliation plane, S, (plane parallel to page in A, plane perpendicular to page in B. Scale is in 

millimeters (#10 = 10 mm). The starting material is composed of quartz and muscovite (C). 
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Figure 3. Cores for experiments in this study were collected at six primary orientations relative to 

the foliation and lineation. The red top number represents the core angle to the foliation, and the 

blue bottom number represents the core angle to the lineation. Drawing provided by Dr. 

Holyoke. 
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Figure 4. Schematic of the D-DIA assembly used to deform the Gneiss Minuti and Moine Thrust 

quartzite. 

 

 

 

 

 

  



19 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  The X-radiographs show cores (A) before and (B) after deformation in the D-DIA 

apparatus, and (C) the bottom graph is an example of strain data used to highlight the contrast in 

strain rate between cores of different foliation orientations. 
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Figure 6. Peaks of Al2O3 in X-ray spectra collected from the top and bottom pistons during 

deformation (with 1atm/25°C alumina peaks indicated in blue and lattice planes labeled) are 

shifted slightly to the left due to compression of the crystal lattice. The channel number refers to 

the energy, which is found by determining 2θ in Bragg’s Law (nλ = 2dsinθ). These peak shifts 

are used to determine differential stresses during deformation of the Gneiss Minuti and Moine 

Thrust quartzite. 
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Figure 7. An SEM image showing an outline of a melt pocket and melt channel for the 

differentiation used in this study.  
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Figure 8. The strain rates for each foliation and lineation orientation of the Gneiss Minuti cores. 

The strain rates can be used as an estimation of the strength of each orientation relative to each 

other. 
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Figure 9. The average differential stress of all four Gneiss Minuti experiments was constant after 

reaching the peak stress at a strain of ~10% and ranged from roughly 0.9 to 1.2 GPa. The 

sawtooth pattern is a result of the X-ray spectra, that is used to calculate differential stresses, 

being collected from both the top and bottom alumina pistons. 
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Figure 10. The strain rates for each foliation and lineation orientation of the Moine Thrust 

quartzite cores. The strain rates can be used as an estimation of the strength of each orientation 

relative to each other.  
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Figure 11. The average differential stress of all three Moine Thrust quartzite experiments was 

constant after reaching the peak stress at a strain of ~10% and ranged from roughly 1.2 to 1.6 

GPa. The sawtooth pattern is a result of the X-ray spectra, that is used to calculate differential 

stresses, being collected from both the top and bottom alumina pistons. 
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Figure 12. Optical image of deformed Gneiss Minuti showing undulatory extinction (a), 

deformation lamellae (b) in the quartz and plagioclase, and shear/kinked biotite (c) (Experiment 

information: F45-L45, T = 900°C, P = 2.02 GPa, ε = 28.52%, and 𝜀̇ = 5.37 x 10-6/s). 
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Figure 13. EDS analysis of melt in the deformed Gneiss Minuti samples. The melt contains 

silica, aluminum, calcium, sodium, and potassium. The x-axis is energy, and the y-axis is counts 

(concentration). 
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Figure 14. Melt pockets and single grain channels along grain boundaries, as well as cutting 

through grains observed in Gneiss Minuti F90-L90 cores (A and B). Similar topology was seen 

in the Gneiss Minuti F45-L45 core from GM_004 (C) and F45-L90 core from GM_016 (D). 
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Figure 15. Interconnected vertical melt channels spanning multiple grains in the F0-L0 core from 

the Gneiss Minuti sample GM_005. 
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Figure 16. Optical images of deformed Moine Thrust quartzite showing undulatory extinction 

(a), deformation lamellae (b), and grain boundary bulging (c) in the quartz in the orientation F90-

L90 sample. Localization (d) was also observed along muscovite rich beds in the F45-L45 

sample. The muscovite grains also sometimes showed kinks or were sheared (e). (Experiment 

information: F90-L90 and F45-L45, T = 900°C) 
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Figure 17. Small, scattered melt pockets observed in the F0-L0 orientation from the Moine 

Thrust quartzite sample GM_022. The foliation buckled during deformation and is no longer 

parallel to the compression direction. 
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Figure 18. Small, vertical melt channels cutting through quartz grains and across the foliation in 

the Moine Thrust quartzite with foliation in the F90-L90 orientation (A) and in the F45-L90 

orientation (B). 
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Figure 19. The viscosity of the cores in all the orientations to the foliation and lineation of the 

Gneiss Minuti (A) and Moine Thrust quartzite (B). The Moine Thrust quartzite samples show a 

larger range of viscosities than the Gneiss Minuti samples.  
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Figure 20. The strength anisotropy between the Gneiss Minuti samples (A) and Moine Thrust 

quartzite samples (B). 
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Appendix A. Assembly Procedure 

Materials 

• 1 fired pyrophyllite cube 

• 1 graphite furnace in Al sleeve 

• 1 boron nitride sleeve 

• 2 regular Al pistons 

• 1 1.5 mm diameter platinum cylinder 3.0 to 3.2 mm in height and 4.8 to 5.0 mm in length 

• 2 platinum disks 1.8 mm in diameter 

• 2 platinum disks 1.5 mm in diameter 

• 4 rhenium squares/rectangles 1 to 1.5mm across 

• Powered garnet or small Al piston 

• 2 rock cores that are 1.5 mm in diameter and 1.2-1.3 mm in length 

Material Prep 

• The pyrophyllite cube, graphite furnace in Al sleeve, boron nitride sleeve, and the Al 

pistons are used as they are. 

• Grind the 1.5 mm diameter cores until they are between 1.2-1.3 mm in length using a file 

and clasp. Be careful and make sure the top and bottom of the cores are parallel to each 

other. WRITE DOWN THE FINAL LENGTH OF THE CORES. 

• Use calibrator and metal cutting scissors to make the rhenium squares/rectangles. Be 

careful with cutting them; they will fly and get lost. Before putting the rhenium into the 

assembly flatten the pieces. 

• Use the 1.5 mm hole punch to make the 1.5 mm platinum disks. A scalpel and 1.5 mm 

rod can be used to make the disks as circular as possible. This can be done by placing the 

rod on the disk and using the scalpel to cut off any excess material. 

• The platinum cylinder can be made by using the calibrator to measure the lengths and 

fine scissors to cut the metal into a rectangle. Once the rectangle is cut, use your thumb 

and index finger to roll the rectangle around the 1.5 mm rod to make a cylinder 1.5 mm in 

diameter. 
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Assembly Order 

• Put the graphite furnace in Al sleeve into the fired pyrophyllite cube. Use a rod to push 

one of the Al regular pistons into this assembly (cube + furnace in Al sleeve) so that it is 

snug at one end. Place a small slither of tape on the end with the piston to assure nothing 

falls out during the assembly construction process. 

• Now looking down into the assembly, place a 1.8 mm platinum disk into the assembly so 

that it sits on the inside surface of the Al piston. Next, place the boron nitride sleeve into 

the assembly on top of the platinum disk. When looking into the assembly again, you 

should only see platinum at the bottom of the boron nitride sleeve. 

• Place the platinum cylinder into the boron nitride sleeve, which can be done with 

tweezers. Make sure the cylinder does not stick up too much over the boron nitride sleeve 

or not enough. 

• Place a rhenium disk inside the platinum cylinder so that it is lying flat on the exposed 

platinum and so that the longest axis aligns with one of the diagonals of the cube. After 

this placement has been done, mark the diagonal on the cube with a sharpy perpendicular 

to the longest axis of the rhenium piece. This line will signal the beamline direction.  

• Place a 1.5 mm platinum disk into the assembly next. 

• After the platinum disk, you will now put in your first core. The core should be placed 

into the assembly so that the strike of the foliation is parallel to the beamline you marked. 

After determining the proper placement of the core, it can carefully be put into the 

assembly by wetting the end of the 1.5 mm rod. The water tension can be used to put the 

core into the assembly without significantly moving it from its desired orientation. 

• Follow the core with another rhenium piece (try to get the longest axis perpendicular to 

the beamline) and then put in a 1.5 mm platinum disk. 

• Next, you will either need to fill the assembly with crushed garnet powder or one of the 

small Al pistons depending on the discretion of Dr. Holyoke. 

o Garnet: subtract the length of your two cores from 1.3 mm. The number you get 

will be the depth of garnet powder you need within the cylinder. Scoop the garnet 

into the assembly, making sure to compress it tightly. The depth of the garnet can 
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be checked by marking the length of the second core (the one not in the assembly) 

on the end of a rob and filling the assembly until you can see this mark.  

o Small Al piston: subtract the length your two cores from 1.3 mm. The number you 

get is the length of the small Al piston you need. Use a filer and clasp to file the 

piston down to the desired length and place in the assembly. 

• Place a 1.5 mm platinum disk on top of the compressed garnet powder/small Al piston. 

Next put in a rhenium piece, the second core, another rhenium piece, and then the second 

1.8 mm platinum disk in the order listed. These items are put in the same ways described 

above keeping in mind the beamline direction. The 1.8 mm platinum disk should be 

sitting at the top of the boron nitride sleeve/platinum cylinder. 

• Top off the assembly with the second regular Al piston. Make sure it is secure in the 

assembly and does not stick up too far. 

Helpful Tips 

• Use tweezers with the bend ends to place the metals into the assembly. 

• If the small Al piston is too small to put in the clasp, use your finger to shorten it against 

the file. 

• Take a break if you start getting frustrated. 

• Do not grind the rock cores too fast; it will cause rough ends. 
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Appendix B. Summary of the Gneiss Minuti phase data from each experiment. 

Sample Material
Foliation/Lineation 

Orientation
Phase Area (μm)

Diameter 

(μm)

Major 

Length (μm)

Minor 

Length (μm)

Aspect 

Ratio

Orientation 

Angle (°)

Biotite 687.01 26.91 52.18 14.78 3.53 130.28

Quartz 1246.09 36.64 48.27 28.30 1.71 93.39

Plagioclase 1164.04 35.36 48.96 26.30 1.86 119.04

Melt 54.01 6.47 10.91 4.11 2.65 84.44

Biotite 588.62 25.47 49.89 13.82 3.61 85.81

Quartz 1258.25 37.53 49.80 29.01 1.72 92.63

Plagioclase 1035.71 33.57 49.43 23.46 2.11 80.82

Melt 57.57 7.06 12.93 4.18 3.10 65.28

Biotite 673.48 27.59 44.05 18.30 2.41 81.79

Quartz 1429.97 39.84 48.81 32.85 1.49 87.54

Plagioclase 1438.57 39.45 52.50 30.31 1.73 80.93

Melt 59.62 7.17 11.78 4.68 2.52 86.12

Biotite 516.95 23.90 44.42 13.57 3.27 95.14

Quartz 1342.69 38.16 51.06 29.02 1.76 109.33

Plagioclase 1059.91 34.57 50.34 24.59 2.05 82.36

Melt 43.01 5.59 9.01 3.59 2.51 99.46

Biotite 412.95 21.36 42.17 11.43 3.69 96.45

Quartz 1040.72 33.50 43.44 26.23 1.66 104.64

Plagioclase 839.09 30.59 42.24 22.57 1.87 112.86

Melt 33.86 5.90 10.06 3.69 2.72 93.79

Biotite 940.84 32.04 60.98 17.72 3.44 113.11

Quartz 1190.54 35.83 47.70 27.56 1.73 107.57

Plagioclase 1232.67 37.41 52.63 27.68 1.90 116.67

Melt 23.00 4.55 8.27 2.66 3.11 78.63

Biotite 626.42 24.81 41.71 15.30 2.73 90.10

Quartz 1390.69 38.84 47.59 32.37 1.47 83.28

Plagioclase 1323.10 36.38 47.60 28.39 1.68 96.56

Melt 27.03 5.12 10.41 2.80 3.72 85.33

Biotite 465.60 21.94 36.30 13.87 2.62 93.63

Quartz 1203.32 34.75 43.57 28.17 1.55 87.51

Plagioclase 993.76 32.63 41.65 26.01 1.60 91.86

Melt 20.53 4.47 8.08 2.67 3.03 83.53

GM_017

Gneiss 

Minuti

Gneiss 

Minuti

Gneiss 

Minuti

F0-L0

F90-L90

F45-L90

F90-L90

F0-L45

F0-L90

GM_016

GM_004
Gneiss 

Minuti

F45-L45

F90-L90

GM_005
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