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Executive Summary 

Background 

The project’s purpose is to determine if an algorithm designed to identify potential drug 

candidates can identify drug candidates that target complement factor C1s, a protein which 

causes tissue damage when under-regulated (Chen et al., 2018 p.1). The project consists of 

identifying potential candidates in a large compound database with predictive models and a 

series of experiments designed to test the different candidates’ biological activity to confirm the 

performance of the algorithm. Since the algorithm has the capability to screen millions of 

compounds, it is beneficial to the process of medicine development as it allows a larger pool of 

compounds to be considered that would have otherwise been overlooked in a quicker manner 

than traditional methods (Chen et al., 2018 p.1). Once the performance of the algorithm is 

verified, the algorithm can be widely applied to target other biological systems and identify 

potential drug candidates for specific diseases. Furthermore, candidate structure can be analyzed 

to yield potential leads for further investigation. 

Quantitative Results  

In the first round of experimental testing, seven compounds were tested. Four of these 

compounds are considered active since they possess reported half-maximal inhibitory 

concentration (IC50) values, meaning they inhibit the biological activity of the activated C1s by 

half (Aykul, 2016). The results from the first round of experiments are used to augment the 

existing data and retrain the models in the algorithms to improve predictive power for a higher 

hit rate. After retraining the models, fifty-two compounds were identified and ten were 

purchased for experimental validation (Chen et al., 2018 p. 11). Of the ten compounds that were 

tested, only five are considered active for an experimental validation hit-rate of 50%, which is 

lower than the first-round experimental validation hit-rate of 57%.  



Conclusions 

The 9 compounds showing activity are promising drug candidates as they have the capability to 

inhibit C1s. From observing the structures of the compounds that were experimentally tested in 

Tables 4-5, its apparent two core molecular structures or scaffolds are prominent, which can be 

seen in Figures 3-4. From comparing compounds, inferences can be made on how activity is 

related to both positions of large functional groups and the identity of functional groups, which is 

detailed in the Discussion/Analysis section (Chen et al., 2018 p.13). Moreover, in the PubChem 

Bioassay ID (AID) 787(Diamond, 2008) dataset, the fraction of actives predicted from the 

training set was 0.12, a fraction smaller than in other studies that contribute to the larger 

endeavor (Chen et al., 2018 p.13). These findings suggest the pipeline and models have the 

capability to be applied in cases with a limited amount of data on the desired active compounds 

(Chen et al., 2018 p.13).  

Broader Implications of Work  

The experimental results are of benefit to society due to the identification of nine potential drug 

candidates that have the capability to inhibit C1s, a protein which causes tissue damage when 

under-regulated (Chen et al., 2018 p.1). Developing medicine by using computer algorithms and 

virtual high-throughput screens is promising due to the larger number of compounds that can be 

considered in a quicker manner than traditional methods (Chen et al., 2018 p.1). Through the 

results of the studies in this series, the range of applications that the pipeline can be utilized is 

further defined in order to support and enrich future drug discovery efforts (Chen et al., 2018 

p.18).  

Technical/career skills that were obtained as the result of this research include technical aptitude, 

technical writing and editing skills in the process of publishing articles, problem solving, soft 



skills, data analysis, laboratory skills, and refined written and oral communication skills. 

Personal gains include exposure to concepts such as high-throughput computing, data mining 

and binning, structure-activity relationships, machine learning, and a deeper understanding of 

bioinformatics. Other personal gains include discipline, adaptability, open mindedness, and 

improved confidence in presenting research posters.   

Recommendations  

The 9 compounds showing activity are promising drug candidates as they have the capability to 

inhibit C1s. These compounds are recommended for further testing, such as at the cellular level, 

to see the effects on C1s inhibition (Chen et al., 2018 p.13). Applications that the pipeline can be 

applied to should continue to be explored as its potential to speed-up the process of developing 

medicine by using computer algorithms and virtual high-throughput screens is promising.  

  



Introduction  

At a time when viruses such as the coronavirus are becoming widespread, the importance of a 

reliable solution to efficiently find probable drug candidates to cure or manage symptoms is 

urgent. The greatest significance of this research is its contribution to the medicinal industry. 

Specifically, its potential to speed-up the process of developing medicine by using computer 

algorithms and virtual high-throughput screens. Using these methods, a larger number of 

potential compounds are considered in a quicker manner than traditional methods (Chen et al., 

2018 p.1). As a result, the chances of finding a drug candidate that can successfully target a 

specific protein to debilitate the selected disease increase (Chen et al., 2018 p.1). This project is a 

part of a larger study which is comprised of several studies. The objective of the larger study is 

to determine the effectiveness and applicability of a series of models referred to as the pipeline 

(Chen et al., 2018 p. 5). The individual studies identify likely active compounds through utilizing 

computer algorithms and virtual high-throughput screens (Chen et al., 2018 p. 3). Through 

experimentation, compound activity with the targeted protein is verified. The focus of this study 

is to identify the drug candidates to treat human complement factor C1s, a protein which causes 

tissue damage when under-regulated (Chen et al., 2018 p.1).  

 

Complement system functions as a part of the immune system in targeting and killing harmful 

bacteria in the body (Gani). The complement system is comprised of many proteins which 

circulate in blood and tissue fluids fulfilling a critical role in inflammation and defense against 

infections (Gani). The complement system can be activated via three pathways, one of which is 

the classical pathway that involves complement components C1, C2, and C4 (Gani). The 

classical pathway is activated by antibody-antigen complexes binding to C1(Gani). When 

proteins are activated, they have a cascade response. Meaning, the activation of one protein, for 

example C1, will consequently activate the next protein in the cascade (Gani). C1 is comprised 

of subcomponents C1q, C1r, C1s each of which are activated in a cascade manner to initiate 

responses in the immune system (Gani). Since the C1 complex is essential to the activation of the 

classical pathway, it is an imperative molecule to monitor (Gani).   

 

The body’s only mechanism to regulate C1 activation is through the production of the C1 

inhibitor (Ratnoff & Lepow, 1957, as cited in Chen et al., 2018 p. 2). Alterations to the 

production of the C1 inhibitor can lead to the excessive activation of C1 which will consequently 

cause inadequate regulation of the classical pathway (Chen et al., 2018 p. 2). Excessive 

activation of  C1 can lead to chronic inflammation and tissue damage (Chen et al., 2018 p. 2). 

Deficiencies in the components of the classical pathway including C1, C4, and C2 can lead to 

systemic lupus erythematosus, glomerulonephritis, and polymyositis, which are diseases 

characterized by tissue damage or inflammation (Gani). Deficiencies of the C1 inhibitor can lead 

to hereditary angioedema (Gani), a disease characterized by episodes of severe swelling 

(Hereditary). While treatment to these diseases could include a supplementary C1 inhibitor, it is 

a costly approach (Chen et al., 2018 p. 2). Another approach is to inhibit the activation of C1 

directly versus utilizing the C1 inhibitor (Buerke et al., 2001, as cited in Chen et al., 2018 p. 2).  

 

Specifically, targeting C1s is most promising as it initiates the classical pathway by activating 

subsequent steps C1r and C1q (Chen et al., 2018 p. 2&18). As a result, the focus of this work is 

to identify small molecule C1s inhibitors by using a virtual high-throughput screen (vHTS) and 

computer algorithms (Chen et al., 2018 p. 2). This is a promising approach as other researchers 



have used these methods to discover potential molecules for other components in the 

complement system (Vulpetti et al., 2017, as cited in Chen et al., 2018 p. 2). This study 

contributes to a larger endeavor which determines the effectiveness of the pipeline on varying 

protein/ligand systems, dataset sizes, and dataset active/inactive classification (Chen et al., 2018 

p. 6). The pipeline refers to models through which structural feature patterns in compounds are 

correlated with experimental data to find new ligands as potential candidates (Chen et al., 2018 

p. 6).  

 

Background 

Virtual high-throughput screen (vHTS), which is a virtual approach to high-throughput screen, is 

a computational method enabling the organization and exploration of candidate libraries for drug 

testing (Chen et al., 2018 p. 3). Through vHTS, models are utilized to analyze molecules 

digitally. The algorithm that implements vHTS is comprised of the genetic algorithm (GA) 

[Whitley, 1994] and the support vector machine (SVM). This study and the other studies 

contributing to the larger endeavor utilize existing data through ligand-based approaches (Chen 

et al., 2018 p. 3). Ligand-based approaches consist of active/inactive classification, quantitative 

structure-activity relationship (QSAR) models, and similarity of known ligands (Chen et al., 

2018 p. 3,6). 

 

The methodology of this study and the other studies contributing to the larger endeavor follow 

the same general procedure consisting of four main steps including: (1) identifying a targeted 

dataset, (2) using the targeted data set to train predictive classification and quantitative structure-

activity relationship (QSAR) models, (3) screen a compound library with the classification and 

QSAR models, and (4) experimentally validate model predictions (Chen et al., 2018 p. 4). To 

further elaborate on the first step, PubChem Bioassay ID (AID) 787 was selected for possessing 

the experimental and ligand structure data required for the pipeline while containing a minuet 

fraction (11.8%) of active compounds as Cls inhibitors (Diamond, 2008, as cited in Chen et al., 

2018 p. 6). From the selected dataset, pan-assay interference compounds (PAINS)(Baell, 2010), 

which are compounds that undesirably interact with multiple proteins, are removed (Chen et al., 

2018 p. 3). It was discovered that these compounds gave false-negative experimental results. 

Therefore, PAINS(Baell, 2010) were removed so the performance or predictability of the trained 

models are not affected (Chen et al., 2018 p. 3). After the PAINS(Baell, 2010) are removed, the 

resulting data set will be used to train models.  

 

The second step involves applying the algorithms, which is used here as a blanket term for a 

bunch of codes including Signature molecular descriptor and model training (Chen et al., 2018 p. 

4). These codes will be utilized to screen upwards of 72 million compounds in the PubChem 

Compound database for potential candidates/compounds (Chen et al., 2018 p. 4 & 6). Signature 

molecular descriptor is a technique that translates molecular structures into a code that can be 

understood and used by algorithms used for model training (Chen et al., 2018 p. 4). Figure 1 

depicts the molecular structure of ethanol, which includes its elements and bonds, and the 

resulting Signature molecular fragmentation that allows it to be used by the algorithms (Chen et 

al., 2018 p. 5). The root atom, which is designated by the carbon surrounded by borders in 

Figure 1, is a height of zero, and all directly bonded atoms have a height of one (Chen et al., 

2018 p. 5). Atoms that are bonded to the atoms at a height of one, or the root atom’s secondary 

atomic neighbors, are designated by a height of 2 (Chen et al., 2018 p. 5). While the signature for 



the root atom is defined as the atomic structure, the combination of atomic Signatures for all 

atoms is defined as the molecular signature (Chen et al., 2018 p. 5). 

 

 
 
Figure 1: Depicts the molecular structure of ethanol, which includes its elements and bonds, and the 

resulting Signature molecular fragmentation at heights one and two from the root atom which is 

designated by the carbon enclosed in a box. While the root atom has a height of zero, all directly bonded 

atoms to the root atom have a height of one (Chen et al., 2018 p. 5). Atoms that are bonded to the atoms at 

a height of one, or the root atom’s secondary atomic neighbors, are designated by a height of 2 (Chen et 

al., 2018 p. 5). While the signature for the root atom is defined as the atomic structure, the combination of 

atomic Signatures for all atoms is defined as the molecular signature (Chen et al., 2018 p. 5). 

Slightly modified from Chen, J and Visco, D.P. Identifying novel factor XIIa inhibitors with PCA-GA-

SVM developed vHTS models. European J. Med. Chem.; 140:31-41. Copyright © 2017 Elsevier Masson 

SAS. All rights reserved. which is cited in Chen, J. J., Schmucker, L. N., & Visco, D. P. Pharmaceutical 

Machine Learning: Virtual High-Throughput Screens Identifying Promising and Economical Small 

Molecule Inhibitors of Complement Factor C1s. Biomolecules, 8(2), 24. 7 May 2018. Copyright © 2018 

by the authors.  

 

After Signature translates the molecules, the Molecular Signatures are used as inputs to create 

and train models using algorithms including principal component analysis (PCA), support vector 

machine (SVM) and genetic algorithm (GA) (Chen et al., 2018 p.16). The principal component 

analysis (PCA) associates a weighted contribution of each atomic Signature so the atomic 

Signatures contributing the most to capturing variance are identified and used to create the GA-

SVM Virtual high-throughput screen (vHTS) models (Chen et al., 2018 p. 16). The GA-SVM 

vHTS models create a positive feedback loop in which they depend on each other to yield an 

optimum model (Chen et al., 2018 p. 16).  



 

The GA(Whitley, 1994) designs atomic Signature combinations, which the support vector 

machine (SVM) uses to create models. The SVM models are evaluated for cross-validation 

accuracy, which is used as a metric to measure the predictive power of the models and whether 

the compounds are active or inactive (Chen et al., 2018 p. 16). The cross-validation scores are 

reported back as scores for the atomic Signature combinations to the GA(Whitley, 1994) (Chen 

et al., 2018 p. 16). The GA(Whitley, 1994) can then ranks atomic Signature combinations by the 

cross-validation scores and uses the top percentage to make the next round of combinations 

which is then sent to the SVM. By removing unsuitable combinations through the iterations 

between GA-SVM, overfitting or the variance and noise in the data is minimized (Chen et al., 

2018 p. 16). Through each iteration, the predictability relating Signatures to compound activity 

improves. The combination of Signature and GA-SVM models are then used in the next step to 

screen the PubChem Compound database for potential candidates/compounds (Chen et al., 2018 

p. 6). 

 

The third main step in the procedure involves screening a compound library with the 

classification and QSAR models (Chen et al., 2018 p. 4). The PubChem Bioassay ID (AID) 

787[Diamond, 2008] is used to develop two models/filters: classification (active/inactive) and 

the half-maximal inhibitory concentration (IC50) prediction to test for compound activity (Chen 

et al., 2018 p. 6). The trained GA-SVM vHTS models are then implemented to screen around 72 

million compounds in the PubChem Compound database by filtering them based off 

classification and IC50 prediction to identify potential active candidates for experimental 

validation (Chen et al., 2018 p. 16). Candidates selected for experimental validation are further 

narrowed down by availability and financial feasibility. Step four involves experimentally 

validating the model predictions (Chen et al., 2018 p. 4). Experimental procedures for this study 

are detailed in the Experimental Methods section and are used to verify biological activity 

(Chen et al., 2018 p. 6). Experimental data is used to retrain the models, identify new C1s 

inhibitors, and evaluate model predictions and the pipeline (Chen et al., 2018 p. 6). After the 

models are retrained, the process is conducted again to determine whether model performance 

has improved (Chen et al., 2018 p. 6).  

 

The components of the experiments are designed to replicate the enzyme-substrate interaction in 

cells within the body. Enzymes are complex molecules formed out of a chain of amino acids 

intended to serve a specific function or product within the cell (Biology…Editors, 2016). 

Enzymes possess active sites which are areas that can create weak bonds with the substrate 

(Biology…Editors, 2016). After the substrate fits into the active site/binding cavity, an enzyme 

substrate complex, which is a temporary molecule, is formed and the shape of the substrate is 

changed (Biology…Editors, 2016). Once the substrate no longer has its original shape, it can no 

longer bind to the enzyme and the products of the reaction are released (Biology…Editors, 

2016). The enzyme will then repeat this process with another substrate molecule 

(Biology…Editors, 2016). 

 

For a drug to be effective, the active compound must have the precise size and shape of the 

binding pocket of target enzyme (Klebe). In addition, the surface properties of the 

compound/ligand and enzyme must be compatible for interactions with cellular components to 

take place (Klebe). When the ligand is in the active site/receptor of the enzyme, it gets caught 



since the typical reaction between the substrate and protein does not occur (Biology…Editors, 

2016). The compound, which are inhibitors in the case of this study, are then bound to the 

enzyme inhibiting its activity and produce the desired biological effect (Klebe). A visual 

representation of this can be seen in Figure 2. Compound activity with the enzyme is measured 

by obtaining data from a fluorescence scanner since the ligand-enzyme complex fluoresces. By 

experimentally validating compounds predicted from the pipeline, the predictive power of the 

models can be analyzed.  

 
Figure 2: Symbolizes protein in a cell which is then magnified in order to see the protein receptor/active 

site interaction with a ligand/compound. The substrate is unable to interact with the protein since the 

ligand is stuck in the active site. Since this is a symbolic representation, colors, sizes, and shapes are not 

accurately depicted.  

 

Experimental Methods 

The purpose of the experiments is to identify compounds that are potential candidates for C1s 

inhibitors. Recall, C1s initiates the classical pathway so inhibiting C1s is essential to 

regulating/inhibiting C1 activation in diseases where there are variations in the production of C1 

inhibitor C1q (Chen et al., 2018 p. 2). Without an adequate amount of the C1 inhibitor, the 

activation of C1 is uncontrolled leading to chronic inflammation and tissue damage (Chen et al., 

2018 p. 2). The protocol in the PubChem Bioassay AID 787(Diamond, 2008) involves plating 

the activated human complex factor C1s and substrate solutions to test various potential drug 

compounds. Compounds that inhibit the biological activity of the activated C1s are deemed 

active and vice versa.  In the experiments conducted, fluorescence is used as a measure of 

biological activity because the ligand fluoresces after it is processed by the protein. The results 

from experiments are used to augment the existing data and retrain the models in the algorithms 

to improve predictive power for a higher hit rate. The higher the hit rate, the more effectively 

drug candidates are identified. After retraining the models, a second round of compounds is 

tested to evaluate the pipeline’s ability to make accurate predictions (Chen et al., 2018 p. 11). 

 

Before experimentation, procedure calculations were carried out utilizing the molarity equation 

(molar concentration = moles solute/liters of solution) and molecular weights to obtain the 

amount needed of each substance. From these calculations, solutions including assay buffer 

solution, substrate solution, and protein solutions were prepared. The assay buffer consisted of 

Millipore water, 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) from 

Sigma Aldrich (Prod. No. H4034), 200 mM sodium chloride (NaCl) from Chem-Impex (CatID 

00829; Wood Dale, IL, USA), and 0.2% polyethylene glycol (PEG) from Sigma Aldrich (Prod. 

No. P 3390) (Chen et al., 2018 p. 17). Since the assay buffer needs to have a pH of 7.5, the pH of 

the solution was measured using litmus paper and was adjusted by hydrochloric acid (HCl) or 

sodium hydroxide to make the solution either more acidic or basic, respectively. Maintaining the 



proper pH is essential for the proper functioning of the protein. The enzyme solution consists of 

the activated human complement factor C1s from CalbioChem (CatID 204879; Billerica, MA, 

USA) at a final concentration of 0.02 mg/mL in the assay buffer (Chen et al., 2018 p. 17). The 

substrate solution is comprised of Boc-Leu-Gly-Arg-AMC from Bachem (CatID I-1105; 

Torrance, CA, USA) at a final concentration of 15 M in the assay buffer (Chen et al., 2018 p. 

17). Once the solutions are prepared, the remaining materials can be gathered.  

 

All compounds to be tested were from Molport (Riga, Latvia) and were diluted at 50 times 

concentration in dimethyl sulfoxide (DMSO) (Chen et al., 2018 p. 17). Once the adequate 

amount of DMSO was added to each compound vile, they were placed on the Vortex machine 

until the compound completely dissolved. Once the compounds are ready, Corning black 

polystyrene 96-well, flat bottom plates, which are purchased from Sigma Aldrich (Prod. No. 

CLS3915), were obtained (Chen et al., 2018 p. 17). The plate has columns labeled 1-12 and rows 

labeled A-H. A multichannel pipette with twelve channels was used so the components are 

plated as close to the same time as possible to eliminate any possibility for discrepancies within 

the data. Once the mentioned materials are gathered, the experimentation process can begin.  

 

The experiment begins with the substrate solution. Row A, columns 1-9 was filled with 66.67 L 

of substrate solution while the remainder of the plate rows B-H, columns 1-9, 11-12 and row A, 

columns 11-12 received 50.0 L of the substrate solution (Chen et al., 2018 p. 17). Next, 2.66 L 

of the first compound was inserted into each well in row A, columns 1-3. The pipette tip was 

changed after each time the compound was injected into a well to prevent contamination of the 

compound vile. The next compound was inserted into wells in row A, columns 4-6, again 

changing the pipette tip after 2.66 L of the compound was inserted into each well. Finally, 2.66 

L of the last compound was inserted into each well in row A, columns 7-9, again changing the 

pipette tip after each well. Next, the compounds in row A, columns 1-9 were diluted by eight 

four-fold dilutions from 2.5 mM to 152.6 nM to achieve the final testing concentrations from 50 

M to 3.05 nM (Chen et al., 2018 p. 17).  

 

To achieve these concentrations, the wells in row A, columns 1-9 were lightly mixed by the 

multichannel pipette and 16.66 L was removed from each of those wells and inserted into row 

B, columns 1-9, where the wells were again mixed with the pipette tip. This same procedure 

continues for the remaining rows C-H, where 16.66 L was removed from each well in columns 

1-9 from the prior row and inserted and mixed in the next row and so on. After 16.66 L was 

removed from each well in row H, columns 1-9 the enzyme solution is ready to be added. The 

enzyme solution was added, 50 L into each well, to wells in Rows A-H, columns 1-10 and 12. 

Next, assay buffer solution was added, 50 L into each well, to wells in Rows A-H, columns 10 

and 11. Then, the plate was covered in foil and incubated for 2.5 hours at room temperature 

before being scanned for florescence (excitation 355, emission 460) on a Tecan M200 (Chen et 

al., 2018 p. 17). This procedure was repeated to test 7 compounds in the first pass/round and 10 

compounds in the second round.  

 

 

 

 

 



Data and Results  

In the experiments conducted, fluorescence signal is used as a measure of biological activity 

because the ligand fluoresces after it is processed by the protein. Compounds that inhibit the 

biological activity of the activated C1s are deemed active. Quantitatively, compounds are 

considered active if they have reported half-maximal inhibitory concentration (IC50) values 

signifying there is biological activity (Chen et al., 2018 p. 8). IC50 values measure a drug’s 

efficacy and indicate the amount of the drug required to inhibit the C1s activity by half (Aykul, 

2016). The importance of the reported/average IC50 values is that these values are used to retrain 

the quantitative structure-activity relationship (QSAR) models. The reported IC50 values are 

calculated by taking an average of the IC50 values, which are calculated by linear interpolating 

points straddling 50% inhibition (Chen et al., 2018 p. 18). Compounds that did not have 50% 

inhibition within the columns in which it was tested were considered inactive (Chen et al., 2018 

p. 18).  Inactive candidates are those which show limited biological activity and should not be 

considered for testing. Percent inhibition is calculated by utilizing Equation 1. To understand 

why the signal, blank, and control values are measured, the process of analyzing the data from 

the Tecan M200, which is a florescence scanner, needs to be understood. 

 

 
Equation 1: depicts how to calculate percent inhibition. The signal refers to the fluorescence 

measurements seen in columns 1-9, rows A-H in Table 1. The blank value refers to the average of the 

substrate fluorescence signals in column 11 in Table 1. The control value is an average of the 

fluorescence signals in column 12 in Table 1. 

The picture is adapted from Chen, J. J., Schmucker, L. N., & Visco, D. P. Pharmaceutical Machine 

Learning: Virtual High-Throughput Screens Identifying Promising and Economical Small Molecule 

Inhibitors of Complement Factor C1s. Biomolecules, 8(2), 24. 7 May 2018. Copyright © 2018 by the 

authors. 

 
Table 1: depicts unitless measurements from the Tecan M200 of the fluorescence emitted from each well 

of the 96-well, flat bottom plate. Three compounds are tested per plate. Compounds are labeled by their 

PubChem ID number (CID). In this table, compound CID 1107361 was plated in columns 1-3, rows A-H; 

compound CID 2986934 was plated in columns 4-6, rows A-H; and Compound CID 710644 was plated 

in columns 7-9, rows A-H. 

  
 

Once the experimental Corning black polystyrene 96-well, flat bottom plate is scanned for 

florescence (excitation 355, emission 460) on a Tecan M200, its measured values are inputted 

into an Excel sheet (Chen et al., 2018 p. 17). The results from the first scan of the plate are used 

to find the maximum florescence signal value in columns 1-9, rows A-H. Once this value is 

located, the florescence scanner re-reads the plate by referencing the maximum value to give the 

values as seen in Table 1. The reason for referencing the maximum value is to scale the data so 



any nuances in the fluorescence signal can be detected. The values in Table 1 are then utilized to 

calculate the percent inhibition (Equation 1), the results of which can be found in Table 2.  

 

In Table 1, column 10 (rows A-H) serves as the protein check as it consists of 50 mL enzyme 

solution and 50 mL assay buffer in each well of this column (Chen et al., 2018 p. 17). Column 11 

(rows A-H) or the blank is comprised of 50 mL substrate solution and 50 mL assay buffer in 

each well of this column (Chen et al., 2018 p. 17). The significance of removing the 

blank/substrate in Equation 1 is to remove the background signal from analysis, so the 

fluorescence signal is purely from the ligand-protein interaction. Columns 10 and 11 were used 

as checks to make sure that neither the substrate nor the protein/enzyme are auto florescent. If 

either of them was auto florescent, it would be difficult to differentiate between the florescence 

signal coming from ligand after it is processed by the protein or from the protein and substrate 

themselves. By testing the substrate and protein/enzyme individually in columns 10 and 11 

respectively, it guarantees that any florescence signal coming from wells in columns 1-9, rows 

A-H are from the ligand-protein interaction. Column 12 serves as the control as it consists of 50 

mL substrate solution and 50 mL enzyme solution in each well of this column (Chen et al., 2018 

p. 17). Since these same solutions are present in wells in columns 1-9, rows A-H, florescence 

signals higher than those found in column 12 can be attributed to the compound being auto 

florescent. Compounds that proved to be auto florescent were removed from analysis.  

 
Table 2: shows inhibition fractions that were calculated using Equation 1. These calculations can be 

visualized in Table 6 in the Appendix.  From these values, the IC50 values are calculated by linear 

interpolating points straddling 0.5 inhibition and the corresponding dilutions, which are the eight four-

fold dilutions starting with 50 micromolar listed in the column in gray. A sample of this calculation can 

be visualized in Table 7 in the Appendix. The IC50 values for each compound are averaged to calculate 

the reported IC50 values. The standard deviations (STDEV) are also calculated from each of the IC50 

values. For compound CID 1107361 in columns 1-3 there are no IC50 values since the measurements 

never achieved 50% inhibition activity.  

 
 

In the first round of experimental testing, seven compounds were tested. Four of these 

compounds are considered active since they possess reported IC50 values. Compounds with no 

IC50 values are deemed inactive because the measurements never achieved 50% inhibition 

activity, meaning a concentration higher than what was tested is necessary. The highest 

compound concentration tested in the AID 787 protocol is 50 M (Diamond, 2008, as cited in 

Chen et al., 2018 p. 6). Concentrations influence the effectiveness of a drug as it is absorbed into 



cells and intracellular sites (Steinberg, 1994). An example of an inactive compound is CID 

1107361 in columns 1-3 of Table 2. As seen in Table 2, the measurements never achieved 50% 

inhibition activity so there are no IC50 values and the compound is deemed inactive. A summary 

of results can be seen in Table 3, and the compound structures, reported IC50 values, and 

standard deviations can be seen in Table 4 for the first round of testing and Table 5 for the 

second round. The results from the first round of experiments are used to augment the existing 

data and retrain the models in the algorithms to improve predictive power for a higher hit rate. 

After retraining the models, fifty-two compounds were identified and ten were purchased for 

experimental validation due to financial feasibility (Chen et al., 2018 p. 11). The second round of 

compounds is tested to evaluate the pipeline’s ability to make accurate predictions (Chen et al., 

2018 p. 11). Of the ten compounds that were tested, only five are considered active for an 

experimental validation hit-rate of 50%, which is lower than the first-round experimental 

validation hit-rate of 57%.  

 
Table 3: depicts the summary of experimental results. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4: depicts the compounds that were tested in the first round of experiments. The compound 

structure, its PubChem ID number (CID), and predicted and experimental IC50 values are listed for each 

compound. Compounds with reported experimental IC50 values are considered active while those with 

“>50*” are deemed inactive. Compounds that require a concentration greater than 50 M (>50*) are 

considered inactive and are not recommended for further testing. In this round, a total of 7 compounds 

were tested, 4 of which are active compounds. 

The table is adapted from Chen, J. J., Schmucker, L. N., & Visco, D. P. Pharmaceutical Machine 

Learning: Virtual High-Throughput Screens Identifying Promising and Economical Small Molecule 

Inhibitors of Complement Factor C1s. Biomolecules, 8(2), 24. 7 May 2018. Copyright © 2018 by the 

authors. 

 

 
 



Table 5: depicts the compounds that were tested in the second round of experiments. The compound 

structure, its PubChem ID number (CID), and predicted and experimental IC50 values are listed for each 

compound. Compounds with reported experimental IC50 values are considered active while those with 

“>50*” are deemed inactive. Compounds that require a concentration greater than 50 M (>50*) are 

considered inactive and are not recommended for further testing. In this round, a total of 10 compounds 

were tested, 5 of which are active compounds. 

The table is adapted from Chen, J. J., Schmucker, L. N., & Visco, D. P. Pharmaceutical Machine 

Learning: Virtual High-Throughput Screens Identifying Promising and Economical Small Molecule 

Inhibitors of Complement Factor C1s. Biomolecules, 8(2), 24. 7 May 2018. Copyright © 2018 by the 

authors. 

 

 



Discussion/Analysis 

In total, 17 compounds were selected for experimentation based on pipeline outcomes, financial 

feasibility, and accessibility from suppliers (Chen et al., 2018 p.13). Experimental results 

validated the activity of 9 compounds in total from the two rounds of testing. Four active 

compounds were validated out of the seven tested for the first round for a hit rate of 57%. After 

the models were retrained, ten compounds were tested of which five were active for a hit rate of 

50%. Ideally, the hit rate would improve (>57%) after the models are retrained reflecting that the 

drug candidates are more effectively identified. However, the reason for the potential drop is the 

result of the extrapolation required to determine compounds for the second round of testing 

(Chen et al., 2018 p.18). The 9 compounds showing activity are promising drug candidates as 

they have the capability to inhibit C1s. These compounds are recommended for further testing, 

such as at the cellular level, to see the effects on C1s inhibition (Chen et al., 2018 p.13). From 

observing the structures of the compounds that were experimentally tested in Tables 4-5, its 

apparent two core molecular structures or scaffolds are prominent.  

 

For analysis, all tested compounds, including inactive compounds, are broken into two categories 

so inferences can be made on the effects functional groups have on activity. From examining the 

nine compounds containing the first scaffold two major inferences can be made. First, activity is 

largely impacted by the positions of large functional groups (Chen et al., 2018 p.13). This 

inference is supported by Figure 3 (d),(f). The compound structures are the same besides one as 

an ester group in a para position (IC50 =23.1 M) and the other has an ester group in a meta 

position (IC50 >50 M) (Chen et al., 2018 p.13). Secondly, activity is largely impacted by the 

identity of functional groups as seen in Figure 3 (h),(i) (Chen et al., 2018 p.13). Both have 

identical structures besides the functional groups in the para positions. The one with an ester 

Figure 3 (i) has an IC50 =17.1 M while the other (h) has an IC50 >50 M (Chen et al., 2018 

p.14). These results suggest that the identity of the functional groups plays a role in activity.  

 
Figure 3: depicts scaffold 1 (a) which is the core molecule the other 8 compounds contain in their 

structures. Compounds with an asterisk(*) were included in the first round of experimental testing. The 

table is adapted from Chen, J. J., Schmucker, L. N., & Visco, D. P. Pharmaceutical Machine Learning: 

Virtual High-Throughput Screens Identifying Promising and Economical Small Molecule Inhibitors of 

Complement Factor C1s. Biomolecules, 8(2), 24. 7 May 2018. Copyright © 2018 by the authors. 



The conclusions drawn from the structures in the first scaffold were also supported by the second 

scaffold pictured in Figure 4 (a). The impact of functional group position on activity is again 

supported by Figure 4 (c),(d),(e) where the ether group is located at para(IC50 =1.09.1 M), 

meta(IC50 >50 M), and ortho(IC50 =5.54 M) positions respectively (Chen et al., 2018 p.14). 

The para position had the highest activity and the meta position had the lowest, similar to the 

finding in the first scaffold. Figure 4 (f),(g) also follows this pattern with the methyl group 

located at para(IC50 =3.04 M) and meta(IC50 >50 M) positions (Chen et al., 2018 p.14). The 

impact of the identity of the functional group being important is reinforced by Figure 4 (e),(i) 

where differing functional groups in the ortho position resulted in differing IC50 values, 5.54 M 

and 31.0 M, respectively (Chen et al., 2018 p.14).   

 

                                       

 
Figure 4: depicts scaffold 2 (a) which is the core molecule the other 10 compounds contain in their 

structures. Compounds with an asterisk(*) were included in the first round of experimental testing.  

The table is adapted from Chen, J. J., Schmucker, L. N., & Visco, D. P. Pharmaceutical Machine 

Learning: Virtual High-Throughput Screens Identifying Promising and Economical Small Molecule 

Inhibitors of Complement Factor C1s. Biomolecules, 8(2), 24. 7 May 2018. Copyright © 2018 by the 

authors. 

 

 



It is important to remember the study described, AID 787(Diamond, 2008), is a part of a larger 

study to test the predictability of the pipeline in vHTS as it is applied to various systems (Chen et 

al., 2018 p.18). Systems vary by data size, classification (active/inactive) distribution, and benefit 

of model retraining  (Chen et al., 2018 p.18). In AID 787(Diamond, 2008), the fraction of actives 

predicted from the training set was 0.12, a fraction smaller than in other studies that contribute to 

the larger endeavor (Chen et al., 2018 p.13). These findings suggest the pipeline and models 

have the capability to be applied in cases with a limited amount of data on the desired active 

compounds (Chen et al., 2018 p.13). Through the results of the studies in this series, the range of 

applications that the pipeline can be utilized is further defined in order to support and enrich 

future drug discovery efforts (Chen et al., 2018 p.18).  
 

Summary/Conclusions  

The 9 compounds showing activity are promising drug candidates as they have the capability to 

inhibit C1s. These compounds are recommended for further testing, such as at the cellular level, 

to see the effects on C1s inhibition (Chen et al., 2018 p.13). From observing the structures of the 

compounds that were experimentally tested in Tables 4-5, its apparent two core molecular 

structures or scaffolds are prominent, which can be seen in Figures 3-4. From comparing 

compounds, inferences can be made on how activity is related to both positions of large 

functional groups and the identity of functional groups, which is detailed in the 

Discussion/Analysis section (Chen et al., 2018 p.13). Moreover, in the PubChem Bioassay ID 

(AID) 787(Diamond, 2008) dataset, the fraction of actives predicted from the training set was 

0.12, a fraction smaller than in other studies that contribute to the larger endeavor (Chen et al., 

2018 p.13). These findings suggest the pipeline and models have the capability to be applied in 

cases with a limited amount of data on the desired active compounds (Chen et al., 2018 p.13). 

Through the results of the studies in this series, the range of applications that the pipeline can be 

utilized is further defined in order to support and enrich future drug discovery efforts (Chen et 

al., 2018 p.18). Applications that the pipeline can be applied to should continue to be explored as 

its potential to speed-up the process of developing medicine by using computer algorithms and 

virtual high-throughput screens is promising. 
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Appendix 

 

Sample Calculations 

 

Table 6: shows how the inhibition fractions are calculated to get the values shown in Table 2. The cell 

bordered in green depicts how the inhibition values are calculated using Equation 1 and the values in 

Table 1.  

 
 

Table 7: shows how the IC50 values are calculated by linear interpolating points straddling 0.5 inhibition 

and the corresponding dilutions, which are the eight four-fold dilutions starting with 50 micromolar listed 

in the column in gray. For compound CID 1107361 in columns 1-3 there are no IC50 values since the 

measurements never achieved 50% inhibition activity.  

 
 

 

 

 

 



Honors Abstracts Addendum  

A large study was conducted to identify possible drug candidates to treat various diseases using 

computer algorithms, virtual high-throughput screens, and experimental validation of activity. 

Since the algorithm has the capability to screen millions of compounds, it is beneficial to 

pharmaceutical development as it allows a larger pool of compounds to be considered that would 

have otherwise been overlooked. As part of this larger study, this project attempts to identify 

drug candidates to treat human complement factor C1, a protein which causes tissue damage 

when underregulated1. A series of designed experiments validate candidates and confirm the 

performance of the algorithm.  After the first round of experiments, the compounds identified 

through the virtual high-throughput screening had a 57% hit rate of potential compounds and the 

second round after re-training the models was a 50% hit rate1. By analyzing results from the 

experiments, potential drug candidates targeting complement factor C1 were identified for 

additional study. Furthermore, structural analysis of the identified candidates can pinpoint certain 

features of the compounds resulting in potential leads for further investigation.  
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             Complement Factor C1s. Biomolecules, 8(2), 24. 7 May 2018,  

             https://doi.org/10.3390/biom8020024 
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