# The University of Akron IdeaExchange@UAkron

Williams Honors College, Honors Research Projects

The Dr. Gary B. and Pamela S. Williams Honors College

Spring 2020

# Effects of Crosslinking Conditions on Biofouling of Polymer Substrates with a Hydrogel Layer

Laura Davila lad77@zips.uakron.edu

Follow this and additional works at: https://ideaexchange.uakron.edu/honors\_research\_projects

Part of the Polymer Science Commons

Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository.

#### **Recommended Citation**

Davila, Laura, "Effects of Crosslinking Conditions on Biofouling of Polymer Substrates with a Hydrogel Layer" (2020). *Williams Honors College, Honors Research Projects*. 1179. https://ideaexchange.uakron.edu/honors\_research\_projects/1179

This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College, Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact mjon@uakron.edu, uapress@uakron.edu.

# Effects of Crosslinking Conditions on Biofouling of Polymer Substrates with a Hydrogel Layer

Laura Davila

Department of Chemical, Biomolecular and Corrosion

Engineering

## **Honors Research Project**

Submitted to

The Williams Honors College The University of Akron

Accepted:

Approved:

Honors Project Sponsor (signed)

Lingyun Liu Honors Project Sponsor (printed)

Date:

Reader (signed)

Bi-Min Newby Reader (printed)

Date:

Reader (signed)

Jie Zheng Reader (printed) Honors Department Advisor (signed)

Date:

Bi-Min Newby Honors Department Advisor (printed)

\_\_\_\_\_ Date:

Department Chair (signed)

Micheal Cheung Department Chair (printed)

# **Table of Contents**

| Executive summary            |
|------------------------------|
| Introduction                 |
| Background 6                 |
| Experimental Method7         |
| Silicone Rubber Preparation7 |
| Hydrogel crosslinking        |
| Water absorption test        |
| Contact angle measurement9   |
| Cell attachment              |
| Results and discussion       |
| References                   |
| Appendix A                   |

#### **Executive summary**

Hydrogel polymers offer different advantages because they are soft and lubricious. However, these materials are usually not sturdy enough to be used for different applications. One of the advantages of some hydrogels is the prevention of fouling. Fouling is the accumulation of an unwanted, materials on a surface. This project consists in adding a hydrogel skin (thin layer) to the surface of other plastic materials. Specifically, it will be focused on the addition of a hydrogel layer to polystyrene. Polystyrene was chosen because of its great applications in the research field and also because it being a transparent surface it will allows for better imaging of bacteria or cell attachment.

A simple method previously reported (1) was used to crosslink the hydrogel, in this case polyacrylamide, into the polystyrene. The crosslinking process started with a hydrophobic initiator, which for this project benzophenone, was absorbed in the polystyrene. This initiator is what will allow the hydrogel and substrate to crosslink. Then the sample is introduced to the hydrogel monomer with hydrophilic initiator which will allow the monomer to polymerize. After curing it in an UV chamber, the substrate was rinsed to remove the bulk of the hydrogel. To measure and make sure that the surface was in fact hydrophilic, and the hydrogel crosslinking was successful, the contact angle was measured. Additionally, since the purpose of this project was to obtain an antifouling surface cell attachment was used as a way to prove that the antifouling properties were successful.

Some samples made with silicone rubber brand Ecoflex were made to have a better understanding of the process described in the reference article (1). After having a good sample of this material, the challenge was to achieve the same with polystyrene.

The polystyrene was demonstrated to have some issues with the hydrogel crosslinking. The surface of the coated samples was not transparent. This brought some questions. It is known that polystyrene is not as porous as silicone rubber, therefore different conditions were tried to have a better understanding on whether the absorption of the hydrophobic initiator was causing this additionally to an inconsistency with the surface. There are two parameters that affect the absorption of a liquid into a solid, time of the sample soaked and temperature at which it is soaked. Therefore, these two variables were changed. The temperatures evaluated were 23, 50 and 85°C and the soaking times were 5 mins, 1hr, 24hr and 48 hr.

The best conditions were determined to be 50°C and 1hr. 50°C is higher than room temperature but much lower than the glass transition temperature of polystyrene (100°C) therefore this is why it was probably the best temperature. At longer time even though the samples were covered there is a possibility that the solutions could have evaporated therefore, that is probably why the 1 hr soak time works best. Overall, the 1 hr at 23°C sample was determined to be the best condition. This was determined by the lowest contact angle and transparency of the samples.

After the best condition was chosen which was the one soaked for one hour, the samples were tested for fouling by testing the cell attachment to the surface, Bovine Aorta Endothelial Cells were grown, and images were taken after a week under a microscope. The samples with the hydrogel coating showed significantly less cells in the imaging. This 4

reduction in cell attachment proves that the coating was successful in preventing fouling of this type. Further fouling tests can be done to observe success in other types of fouling.

### Introduction

The introduction of a hydrogel coating to a surface has been looked at for different benefits. Certain hydrogels offer antifouling properties that are beneficial to different applications like medical components. Previous attempts (2) (3)have been done to introduce a hydrogel surface to plastic substrates. One of them is to use grafting brushes which works properly but it is not sufficient since the layer is too thin and therefore can be damaged. The second method have a bulkier coating without crosslinking. Opposite to grafting brushes this method has too thick of a layer. Additionally, there is no crosslink therefore the coating is not very strong. A new method was developed and described in an article recently published in 2018 to add a layer of hydrogel coating to different polymers. It introduces different initiators to allow the crosslink of the hydrogel monomer and the polymer surface. They used different substrates and monomer combinations. However, one of the materials that were not used was polystyrene. Polystyrene has a good potential use of a hydrogel coating since it is used in a lot of applications such as in petri dishes, test tubes, and other medical devices. The goal was to obtain a good sample so that the lack of bacteria growth was able to be shown in the microscope. The transparency of this material would allow for observation.

The objective of this project is therefore to achieve a good hydrogel coating on a polystyrene surface. The idea is to provide a surface that has antifouling properties which will be proved using cell attachment tests.

## Background

In the article "Multifunctional "Hydrogel Skins" on Diverse Polymers with Arbitrary Shapes" the authors develop a way to crosslink a thin, yet strong, monomer layer into a polymer substrate. (1) Other works (2) (3) in attempting to add hydrogel layers have done different methods and while they worked for their described purpose, it was not universal to different materials and applications. Additionally, they have their disadvantages of performance. Grafted hydrogels are too thin and not resistant to abrasion. Coatings are too thick and do not adapt to the shape of what you are trying to coat. The method described is very easy to apply with different materials and therefore it is appealing to try because of its simplicity.

Hydrogel polymers offer different advantages because they are soft and lubricious. Additionally, their main advantage is that of preventing fouling of different surfaces. Hydrophobic materials allow all bacteria to attach more strongly, especially when the bacteria are hydrophobic. Therefore, in certain cases it has been shown that a surface that is hydrophilic has antifouling properties (4). Hydrophobic cell fouling is the type of fouling that this paper is going to focus on. To know if the surfaces that were tested were hydrophilic, the contact angle of the surface was measured. The angle formed by the boundary where liquid, gas and solid intersect is called contact angle. This intersection is defined by the Young equation. When the contact angle is low it signifies that the liquid spreads in the solid. On the contrary, a high contact angle shows that the liquid does not spread. Zero contact angle indicates complete wetting and if the angle is greater than 90° the surface is not being wetted by the liquid. (5) In this case water is being used to measure the hydrophilicity of the surface since hydrogels, as its name says it, are very hydrophilic and therefore absorb water.

Polystyrene (PS) is a clear, amorphous, nonpolar commodity thermoplastic that is easy to process. It has excellent optical clarity due to the lack of crystallinity. It is not very porous, and it is very brittle. Polystyrene has a glass transition temperature of 100°C and a Melting temperature of 210-249 °C which is not very high compared to other polymers (6). Because polystyrene is not very porous and is easily dissolved in most organic solvents the absorption of the hydrophobic initiator was a hard task in the coating procedure.

## **Experimental Method**

#### Materials:

Silicone Rubber substrate: Ecoflex 30 obtained by Reynolds Advanced Materials. Polyacrylamide monomer, Benzophenone and Irgacure 2959 obtained by Sigma Aldridge

#### Silicone Rubber Preparation

The first material that was tested to understand the method of adding a hydrogel skin was silicone rubber. The brand used was Ecoflex grade 30. The pack comes with two solutions that have to be mixed in a 1:1 ratio. 10 g of each liquid were measured in a scale on separate beakers and then A was poured into B to be mixed. The solution was degassed using a vacuum pump and a simple degassing chamber for 3 minutes to remove any bubbles formed when mixed. Then, the solution was poured in a Teflon mold that was laser cut to obtain small circular samples with a diameter of about 0.5 cm. The silicone rubber was

allowed to cure for 4 hours at room temperature. Afterwards a post cure was done at 80°C in an oven for 2 hours.

#### Hydrogel crosslinking

The method involves two initiators, one hydrophobic and absorbed by the polymer substrate(i.e. silicone rubber, polystyrene), and the other hydrophilic and added to the hydrogel monomer. First the solutions were made with 10% by weight of Benzophenone (BP) in organic solvent (acetone, isopropanol, or ethanol). The BP was measured in a scale and then the acetone was added using a pipette. Then the monomer solution was prepared with 10% acrylamide and 1% I-2959, then filled up with water using a pipette. After this the polymer substrate was cleaned using Isopropanol (IPA) and DI water and inserted in a UVO chamber to clean better and rinsed with IPA once again. The substrate was then inserted in the BP solution and was left there for the amount of time required depending on the condition seen in **Table 1** and if needed it was put in the oven. If left for a long period of time the solution needed to be covered very well otherwise the organic solvent would evaporate. After, the sample was removed and immersed in the monomer solution. It was then put in a UV chamber for 55 min. After this the sample was rinsed with water and the excess hydrogel was removed gently. The sample was finally allowed to dry. Three samples were obtained for each condition. The conditions are summarized in Table 1.

**Table 1**. Summary of conditions performed to different polymer substrates to add hydrogel layer. These describe the temperatures and times at which the polymer substrates were soaked in the hydrophobic initiator previous to crosslinking with the hydrogel monomer.

| Substrate      | Solvent    | Temprature | Time   |  |  |
|----------------|------------|------------|--------|--|--|
| Silicon rubber | Acetone    | 23°C       | 5 mins |  |  |
|                |            | 50°C       |        |  |  |
|                | 7          | 85°C       | 5 mins |  |  |
|                | Ethanol    |            |        |  |  |
|                | 택 23°C     |            | 1h     |  |  |
|                |            |            |        |  |  |
| Dokaturono     |            |            | 48h    |  |  |
| Polystyrene    |            | 50°C       |        |  |  |
|                | lol        | 85°C       | 5 mins |  |  |
|                | Ispropanol |            |        |  |  |
|                | loud       | 23°C       | 1h     |  |  |
|                | Is         |            | 24h    |  |  |
|                |            |            | 48h    |  |  |

#### Water absorption test

To test if the samples had in fact a coating, one way of knowing if they absorb water. This is because the plain samples are hydrophobic in nature. To know if the samples absorb water, a solution with 2% of food dye in water was made and the samples were soaked in this solution for 1 minute. The samples would then change color if they absorbed the water.

#### **Contact angle measurement**

To measure the contact angle a ramé-hart instrument co.)-model 100-00 goniometer was used. The sample was placed under a water syringe and a small droplet of water was placed on the surface. An amplified image was obtained, and the angle was measured later with Image J. Three measurements were made for each sample.

#### Cell attachment

The cell growth was performed with a similar method to that of a previously published article (7). Bovine Aorta Endothelial Cells were grown in a humidified incubator with 5% CO<sub>2</sub> at 37°C. The medium solution was made of DMEM with 10 % of fetal bovine serum, 1% sodium pyruvate, 1% nonessential amino acids and 2% penicillin streptomycin. The cell attachment was only performed in the samples that had the lowest contact angles and lowest transparency (i.e. Samples soaked for 1 hour in solvent with initiator before being cured to hydrogel monomer solution). The samples were transferred to individual wells and rinsed with PBS three times. Cells were collected by treating them with trypsin/ ethylenediaminetetraacetic acid (0.05%/0.53 mM) to detach the cells, then they were washed with PBS, and finally diluted in the culture medium to reach a final concentration of  $10^5$  cells/mL. The medium was changed every three days. Images were taken after a week of cell attachment using an EVOS xl core inverted microscope.

## **Results and discussion**

The first part of this investigation involved proving that the method developed in the reference article was successful. The method involves the crosslinking in two steps. First, the hydrophobic initiator is absorbed by the polymer substrate. Then, the substrate is introduced to a hydrogel monomer solution and cured (with UV or heat). The polymer substrate crosslinks with the hydrogel thanks to the two initiators introduced to the solutions. (1). To prove the method worked with the materials provided, the conditions seen in **Table 1** were applied to the Ecoflex silicone rubber, these conditions were based on the reference paper. As seen in **Figure 1** the sample was soaked in a 2% food coloring solution in water. The sample absorbed the water because it was coated with the hydrogel and therefore it changed color. Additionally, it can be seen in **Table 2** that the contact angle was reduced from 92.48° to 31.35°. This reduction in contact angle further proved that the coating was successful.

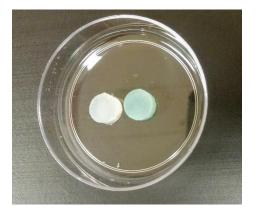
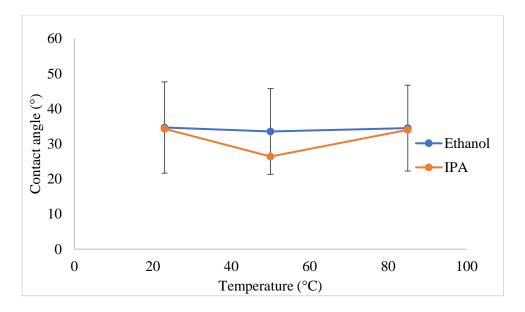
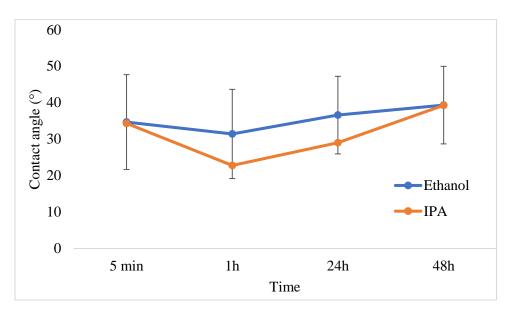



Figure 1. Pristine (left) and hydrogel coated (right) samples of Ecoflex Silicone Rubber(SR)

**Table 2**. Contact angle averages for Ecoflex silicone rubber.

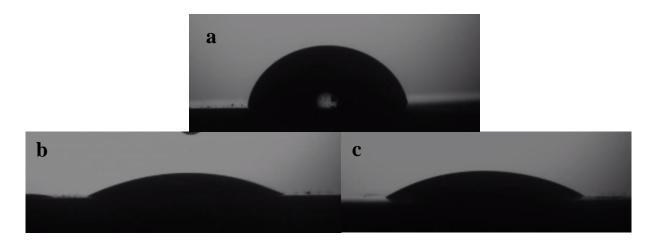

| Sample                             | Contact Angle<br>Average | Contact Angle<br>Standard dev. |
|------------------------------------|--------------------------|--------------------------------|
| SR coated in hydrogel              | 31.35°                   | 0.51                           |
| SR control (pristine)              | 92.48°                   | 0.56                           |
| SR soaked in hydrophobic initiator | 106.34°                  | 0.40                           |

After this, began the study with a new substrate, polystyrene. Polystyrene is a much harder material and with a lower porosity. Therefore, it was a lot harder to achieve a good coating. One important change that had to be made with polystyrene was the solvent used to dissolve the hydrophobic initiator. Acetone could not be used since it dissolves the polystyrene. Therefore, two other solvents were tried: ethanol and isopropanol. Another issue that was encountered was that a transparent surface was preferred to allow the observation of cell attachment and with the first set of conditions (i.e. 5 mins at room temperature) this was not achieved. Therefore, a condition with the best contact angle and with the most transparency was the objective of this experiment. The hypothesis was that the polystyrene needed to absorb the hydrophobic initiator (BP) better. Consequently, by increasing the absorption time or the temperature at which the sample was soaked then it would have better absorption.

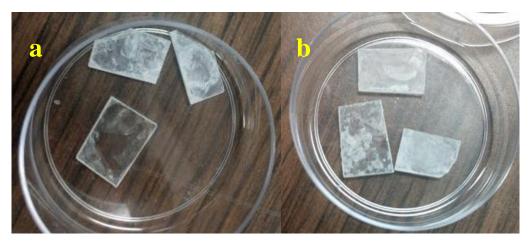

Three different temperatures were chosen to test if a higher temperature would allow the crosslinking to perform better. **Figure 2** shows the comparison of contact angle with changes in soaking temperature while keeping the time at 5 minutes. The best condition for changes in temperature for both Ethanol and IPA was the one at 50°C. This is probably because the glass transition temperature of polystyrene is around 100°C and therefore

getting too close to that would not allow the polymer to absorb as well as at a medium temperature. Nevertheless, the change is not very significant, especially for ethanol that the contact angle has a big standard deviation. Three different samples were prepared for each temperature and three different sections of the sample were measured. Some samples or sections would have larger contact angles which suggests that they did not get coated evenly. One reason for this could be because when the samples were set to cure, they would float in the monomer solution or touch the bottom of the container where it was cured.

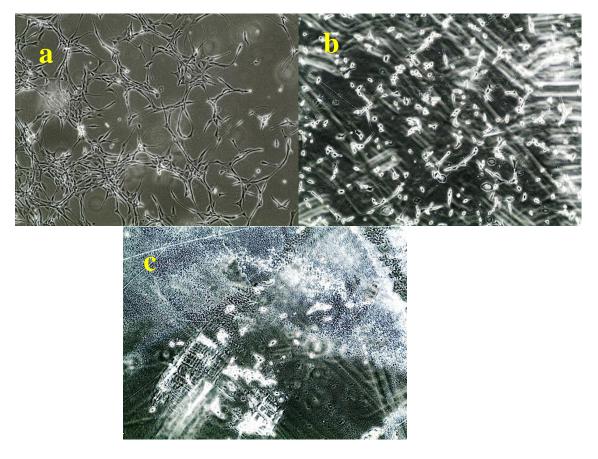
Four soaking times in hydrophobic initiator were chosen to compare how it would affect the crosslinking. Figure 3 shows the comparison of contact angle with changes in soaking time at room temperature. The best condition was found to be 1 hour. Figure 4 shows some examples of contact angle pictures taken for a control sample without any coating, and two with hydrogel coating prepared by soaking in hydrophobic solution with isopropanol and ethanol, respectively. The control sample had an average contact angle of 76.25° which compared to the other two  $(31.39^{\circ} \text{ and } 22.75^{\circ})$  it has a much higher value. This higher value means that the control sample is more hydrophobic compared to the other samples, thus confirming that they have a hydrogel coating. The increase in contact angle with time as seen in **Figure 4** after the 1 hr mark could be due to evaporation even though good care was taken for the solvent not to evaporate, there was still mild evaporation of the solvent. Even though the contact angles were not significantly different, the surfaces for the samples soaked for 1 hr were usually the most transparent samples. The transparency and contact angle were the determining factors to choose the 1-hour soaking condition to proceed with the cell attachment.




**Figure 2**. Contact angle average measurements when polystyrene samples were exposed at different temperatures while soaked in hydrophobic initiator (BP) solution in IPA and ethanol for 5 minutes before the hydrogel crosslink




**Figure 3.** Average contact angle measurements for changes in soaking time of polystyrene in hydrophobic initiator(BP) in IPA and ethanol at room temperature to crosslink with the hydrophilic monomer


**Figures 5** shows images of the samples that were used for the cell attachment portion of the research. These were prepared by soaking in hydrophobic initiator for 1 hour at room temperature which as mentioned above was the condition with best results. As it can be seen, the samples are not completely transparent, there are still some inconsistencies with the surface outcomes and more investigation would have to be made about the causing factors of the whitening. However, the cell preparation was still able to be performed. In **Figure 6** cell attachment to the polystyrene samples can be observed. The control sample (pristine) there were plenty of cell conglomerates observed. Some cells can be seen in the isopropanol sample, these however are very sparse and were only observed in one section of the sample. Very few cells can be seen in a small section of the ethanol sample. The images are not perfect, but the samples were imaged before proceeding with the cell growth, confirming that the cells shown in **Figure 6** are in fact cells and were not there before.



**Figure 4.** Contact angle sample images of a) pristine polystyrene, b)polystyrene coated with hydrogel using ethanol as solvent, c) using IPA as solvent for hydrophobic initiator



**Figure 5**. Samples of polystyrene coated with hydrogel by soaking in hydrophobic initiator dissolved in a)IPA and b)ethanol for 1hr



**Figure 6**. Cell attachment imaging for a) pristine polystyrene, b)polystyrene coated with hydrogel using IPA as solvent, c) using ethanol as solvent for hydrophobic initiator where it was soaked previous to crosslinking to the monomer.

## References

Multifunctional "Hydrogel Skins" on Diverse Polymers with Arbitrary Shapes. Yu, Y.,
 Yuk, H., Parada, G. A., Wu, Y., Liu, X., Nabzdyk, C. S., Youcef-Toumi, K., Zang, J.,
 Zhao, X. 7, s.l. : Advanced Materials, 2018, Vol. 31.

2. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Yuk, H, et al. s.l. : Nature communications, 2016, Vol. 7, p. 12028.

3. Instant tough bonding of hydrogels for soft machines and electronics. Wirthl, D., Pichler, R., Drack, M., Kettlguber, G, et al. 6, Washington, DC : Science advances, 2017, Vol. 3.

4. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. **Desrousseaux, Camille, et al.** 2, Clermont-Ferrand, France : Science Direct, 2014, Vol. 85.

5. **Biolin Scientific.** Biolin Scientific. *Contact Angle*. [Online] https://www.biolinscientific.com/measurements/contact-angle.

6. Polystyrenes. *Polymer Properties Database*. [Online] 2015. [Cited: 04 18, 2020.] https://polymerdatabase.com/polymer%20classes/Polystyrene%20type.html.

7. Amino Acid-Based Zwitterionic Poly(serine methacrylate) as an antifouling material. Liu, Qingsheng, Singh, Anuradha and Liu, Lingyun. 1, Akron : ACS Publications, 2012, Vol. 14, pp. 226-231.

# Appendix A

|                                           | Sample |               |              |         |       |              |
|-------------------------------------------|--------|---------------|--------------|---------|-------|--------------|
|                                           | no.    | Outside Angle | Inside Angle | average | stdev | % difference |
|                                           |        | 146.622       | 33.378       |         |       |              |
|                                           | 1      | 147.301       | 32.699       |         |       |              |
|                                           |        | 147.995       | 32.005       | 32.694  | 0.687 | 2.10%        |
| Σ                                         |        | 145.923       | 34.077       |         |       |              |
| AA                                        | 2      | 146.915       | 33.085       |         |       |              |
| SR + AAM                                  |        | 145.692       | 34.308       | 33.823  | 0.650 | 1.92%        |
| SR                                        |        | 152.592       | 27.408       |         |       |              |
|                                           | 3      | 152.571       | 27.429       |         |       |              |
|                                           | 5      |               |              |         |       |              |
|                                           |        | 152.241       | 27.759       | 27.532  | 0.197 | 0.72%        |
|                                           |        | 86.673        | 93.327       |         |       |              |
|                                           | 1      | 87.004        | 92.996       |         |       |              |
| 0                                         |        | 86.855        | 93.145       | 93.156  | 0.166 | 0.18%        |
| SR- contro                                |        | 88.977        | 91.023       |         |       |              |
|                                           | 2      | 87.101        | 92.899       |         |       |              |
| 4                                         |        | 87.101        | 92.899       | 92.274  | 1.083 | 1.17%        |
| S                                         |        | 87.51         | 92.49        |         |       |              |
|                                           | 3      | 88.379        | 91.621       |         |       |              |
|                                           |        | 88.107        | 91.893       | 92.001  | 0.445 | 0.48%        |
| ۷                                         |        | 76.759        | 103.241      |         |       |              |
| SR- soaked in BP<br>hydrophobic initiator | 1      | 76.159        | 103.841      |         |       |              |
|                                           |        | 76.799        | 103.201      | 103.428 | 0.359 | 0.35%        |
|                                           |        | 69.326        | 110.674      |         |       |              |
|                                           | 2      | 68.991        | 111.009      |         |       |              |
|                                           |        | 69.677        | 110.323      | 110.669 | 0.343 | 0.31%        |
| rop                                       | -      | 74.745        | 105.255      |         |       |              |
| vd Sl                                     | . 3    | 74.814        | 105.186      |         |       |              |
| 2                                         |        | 75.635        | 104.365      | 104.935 | 0.495 | 0.47%        |

Table 3. All data for silicone rubber contact angles shown in Table 2

|                           | Sample 1 | Angle  | average | stdev | % difference | Sample 2 | Angle  | average | stdev | % difference | Sample 3 | Angle  | average | stde |
|---------------------------|----------|--------|---------|-------|--------------|----------|--------|---------|-------|--------------|----------|--------|---------|------|
| c                         |          | 21.801 |         |       |              |          | 28.989 |         |       |              |          | 37.304 |         |      |
| - E                       |          | 22.954 |         |       |              |          | 28.195 |         |       |              |          | 36.511 |         |      |
| ъ<br>Г                    | 1        | 23.595 | 22.783  | 0.909 | 3.99%        | 1        | 30.964 | 29.383  | 1.426 | 4.85%        | 1        | 35.248 | 36.354  | 1.03 |
| Petri w/EtOH 5min<br>RT   |          | 26.928 |         |       |              |          | 33.864 |         |       |              |          | 51.34  |         |      |
| ð                         |          | 28.072 |         |       |              |          | 33.254 |         |       |              |          | 51.033 |         |      |
| ۳.                        | 2        |        | 27.049  | 0.968 | 3.58%        | 2        | 33.476 | 33.531  | 0.309 | 0.92%        | 2        | 50.29  | 50.888  | 0.54 |
| 3                         |          | 21.595 |         |       |              |          | 29.181 |         |       |              |          | 59.859 |         | 0.0  |
| Ē                         |          | 21.595 |         |       |              |          | 30.964 |         |       |              |          | 61.004 |         |      |
| RT                        | 3        |        | 21.021  | 0 995 | 4.73%        | 3        | 31.827 | 30.657  | 1.349 | 4.40%        | 3        | 59.826 | 60.230  | 0.67 |
|                           | 5        | 30.964 | 21.021  | 0.555 | 4.7370       | 5        | 40.236 | 30.037  | 1.545 | 4.4070       | 5        | 41.522 | 00.230  | 0.07 |
| Ē                         |          | 31.675 |         |       |              | -        | 39.588 |         |       |              |          | 39.719 |         |      |
| E.                        | 1        |        | 31.164  | 0 446 | 1.43%        | 1        | 39.806 | 39.877  | 0.330 | 0.83%        | 1        | 40.946 | 40.729  | 0.92 |
| Petri w/EtOH 5min<br>85°C | 1        | 34.216 | 51.104  | 0.440 | 1.45/0       | 1        | 39.123 | 39.077  | 0.330 | 0.85%        | 1        | 35.036 | 40.729  | 0.92 |
| ō                         |          | 34.210 |         |       |              | -        | 39.123 |         |       |              |          | 35.595 |         |      |
| Ĕ.                        | 2        |        | 24.225  | 0.240 | 0.70%        | 2        |        | 29.110  | 1 002 | 2.620/       | 2        |        | 24.025  | 0.7  |
| š                         | 2        |        | 34.335  | 0.240 | 0.70%        | Z        | 38.118 | 38.119  | 1.003 | 2.63%        | 2        | 34.144 | 34.925  | 0.73 |
| ΈU                        |          | 29.116 |         |       |              | -        | 27.022 |         |       |              |          | 35.655 |         |      |
| Petri<br>85°C             |          | 28.511 |         |       | 4.450/       |          | 27.597 | 07.575  |       | 4.070/       |          | 34.472 |         |      |
| <b>⊡</b> ∞                | 3        |        | 28.894  | 0.333 | 1.15%        | 3        | 28.106 | 27.575  | 0.542 | 1.97%        | 3        | 34.095 | 34.741  | 0.83 |
| <u>2</u> .                |          | 24.567 |         |       |              | -        | 36.87  |         |       |              |          | 39.928 |         |      |
| 3                         |          | 25.419 |         |       |              | -        | 35.159 |         |       |              |          | 39.491 |         |      |
| Petri w/EtOH 5min<br>50°C | 1        |        | 24.933  | 0.438 | 1.76%        | 1        | 36.656 | 36.228  | 0.932 | 2.57%        | 1        | 40.486 | 39.968  | 0.49 |
| 5                         |          | 47.07  |         |       |              | _        | 34.114 |         |       |              |          | 31.931 |         |      |
| Ξ                         |          | 46.975 |         |       |              |          | 33.986 |         |       |              |          | 31.908 |         |      |
| 7                         | 2        | 45.644 | 46.563  | 0.797 | 1.71%        | 2        | 34.695 | 34.265  | 0.378 | 1.10%        | 2        | 32.905 | 32.248  | 0.56 |
| ÷ο                        |          | 31.218 |         |       |              |          | 33.247 |         |       |              |          | 23.663 |         |      |
| Petri<br>50°C             |          | 32.242 |         |       |              |          | 31.477 |         |       |              |          | 22.38  |         |      |
| ч р                       | 3        | 32.44  | 31.967  | 0.656 | 2.05%        | 3        | 32.057 | 32.260  | 0.902 | 2.80%        | 3        | 23.962 | 23.335  | 0.84 |
| E                         |          | 23.518 |         |       |              |          | 30.606 |         |       |              |          | 28.686 |         |      |
| 8                         |          | 23.199 |         |       |              |          | 30.005 |         |       |              |          | 29.01  |         |      |
| Petri w/EtOH 1h RT        | 1        | 23.259 | 23.325  | 0.170 | 0.73%        | 1        | 30.399 | 30.337  | 0.305 | 1.01%        | 1        | 29.795 | 29.164  | 0.57 |
| Ŧ                         |          | 22.813 |         |       |              |          | 32.057 |         |       |              |          | 46.123 |         |      |
| о<br>Ц                    |          | 23.364 |         |       |              |          | 32.428 |         |       |              |          | 45.317 |         |      |
| ۳.                        | 2        | 23.091 | 23.089  | 0.276 | 1.19%        | 2        | 32.067 | 32.184  | 0.211 | 0.66%        | 2        | 45.31  | 45.583  | 0.46 |
| 3                         |          | 31.185 |         |       |              |          | 29.197 |         |       |              |          | 37.659 |         |      |
| Ē                         |          | 30.211 |         |       |              |          | 30.677 |         |       |              |          | 39.657 |         |      |
| Ъ                         | 3        |        | 30.507  | 0.589 | 1.93%        | 3        | 29.134 | 29.669  | 0.873 | 2.94%        | 3        | 38.752 | 38.689  | 1.00 |
|                           | -        | 47.265 |         |       |              | -        | 40.601 |         |       |              |          | 23.839 |         |      |
| ٦                         |          | 47.793 |         |       |              |          | 41.448 |         |       |              |          | 22.999 |         |      |
| Petri w/EtOH 24h<br>RT    | 1        |        | 47.309  | 0.464 | 0.98%        | 1        | 41.186 | 41.078  | 0.434 | 1.06%        | 1        | 23.595 | 23.478  | 0.43 |
| I                         | -        | 50.054 |         | 0.101 | 0.5070       | -        | 36.254 | 121070  | 0.101 | 2.0070       | -        | 16.46  | 20.170  | 0.10 |
| Q                         |          | 48.972 |         |       |              | -        | 37.255 |         |       |              |          | 16.975 |         |      |
| Ē                         | 2        |        | 49.986  | 0 002 | 1.96%        | 2        | 38.27  | 37.260  | 1.008 | 2.71%        | 2        | 15.762 | 16.399  | 0.60 |
| Š                         | 2        |        | 49.900  | 0.962 | 1.90%        | 2        |        | 57.200  | 1.000 | 2.71/0       | 2        |        | 10.399  | 0.00 |
| Ξ.                        |          | 48.27  |         |       |              |          | 37.439 |         |       |              |          | 26.816 |         |      |
| RT Pet                    | 2        | 50.618 | 40.004  | 4 354 | 2.52%        | 2        | 36.87  | 27 404  | 0.200 | 0.010/       | 2        | 26.98  | 26 740  | 0.07 |
| <u>~</u> ~                | 3        |        | 49.694  | 1.251 | 2.52%        | 3        | 36.995 | 37.101  | 0.299 | 0.81%        | 3        | 26.333 | 26.710  | 0.33 |
| ~                         |          | 47.643 |         |       |              | -        | 49.456 |         |       |              |          | 24.362 |         |      |
| άο<br>α                   | .        | 47.684 |         |       |              |          | 48.18  |         |       |              |          | 24.747 |         |      |
| 4                         | 1        |        | 48.265  | 1.041 | 2.16%        | 1        | 49.16  | 48.932  | 0.668 | 1.36%        | 1        | 23.839 | 24.316  | 0.45 |
| ò                         |          | 27.663 |         |       |              |          | 45.526 |         |       |              |          | 31.226 |         |      |
| Ξ.                        |          | 28.018 |         |       |              |          | 46.606 |         |       |              |          | 29.655 |         |      |
| >                         | 2        | 28.811 | 28.164  | 0.588 | 2.09%        | 2        | 45.498 | 45.877  | 0.632 | 1.38%        | 2        | 29.401 | 30.094  | 0.98 |
| <u>-</u>                  |          | 53.344 |         |       |              |          | 46.614 |         |       |              |          | 28.951 |         |      |
| Petri w/EtOH 48h<br>RT    |          | 53.276 |         |       |              |          | 45.796 |         |       |              |          | 29.852 |         |      |
| RT                        | 3        | 52 595 | 53.072  | 0 414 | 0.78%        | 3        | 45.379 | 45,930  | 0.628 | 1.37%        | 3        | 28 244 | 29.016  | 0.80 |

Table 4. All data for samples soaked in ethanol as a solvent from figures 3 and 5  $\,$ 

| und<br>bit<br>bit<br>bit<br>bit<br>bit<br>bit<br>bit<br>bit<br>bit<br>bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | Sample 1 | Angle  | average | stdev | % difference | Sample 2 | Angle  | average | stdev | % difference | Sample 3 | Angle  | average | stdev |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|--------|---------|-------|--------------|----------|--------|---------|-------|--------------|----------|--------|---------|-------|
| Ling         1         33.69         33.257         0.391         1.18%         1         36.933         37.180         0.620         1.67%         1         26.565         26.383         1.170           40.156         40.016         3.326         37.78         33.86         37.78         33.364         33.3324         33.3324         33.3324         33.3324         33.3324         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.341         33.327         33.324         32.170         33.342         32.170         33.342         32.170         33.341         33.377         33.342         32.170         33.341         33.377         33.942         32.175         33.341         33.377         33.942         33.377         33.942         33.377         33.942         33.377         33.942         33.337         33.942         33.337         33.942         33.337         33.942         33.377         33.942 <t< th=""><th></th><td></td><td>32.928</td><td></td><td></td><td></td><td></td><td>36.682</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |          | 32.928 |         |       |              |          | 36.682 |         |       |              |          |        |         |       |
| Ling         1         33.69         33.257         0.391         1.18%         1         36.933         37.180         0.620         1.67%         1         26.565         26.383         1.170           40.156         40.016         3.326         37.78         33.86         37.78         33.364         33.3324         33.3324         33.3324         33.3324         33.3324         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.3324         32.170         33.341         33.327         33.324         32.170         33.342         32.170         33.342         32.170         33.341         33.377         33.342         32.170         33.341         33.377         33.942         32.175         33.341         33.377         33.942         33.377         33.942         33.377         33.942         33.377         33.942         33.337         33.942         33.337         33.942         33.337         33.942         33.377         33.942 <t< th=""><th>2</th><td></td><td>33.154</td><td></td><td></td><td></td><td></td><td>37.875</td><td></td><td></td><td></td><td></td><td>25.133</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2         |          | 33.154 |         |       |              |          | 37.875 |         |       |              |          | 25.133 |         |       |
| VILUE         38.577<br>38.66<br>27.361         0.00<br>39.289<br>39.806         0.010<br>39.289<br>39.806         0.830<br>2.08%         1.017.9         26.822<br>2.773         2.7734<br>2.7736         0.915           2         27.736         2.735         0.43         0.431         1.44%         2.9734         2.7736         0.900           30.774         2         2.7759         2.7136         0.900         33.897         33.399         33.441         0.700         0.526         1.71%         3<42.022         41.958         0.434         1.03%         3         33.977         33.942         0.537           23.518         23.518         0.551         2.8274         1         32.662         31.847         1.501         4.71%         1         23.876           23.238         2.32991         0.602         1.82%         2         2.4142         2.3789         2         2.4442         2.4656         0.601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>  | 1        |        | 33.257  | 0.391 | 1.18%        | 1        |        | 37.180  | 0.620 | 1.67%        | 1        |        | 26.383  | 1.170 |
| VILUE         38.577<br>38.66<br>27.361         0.00<br>39.289<br>39.806         0.010<br>39.289<br>39.806         0.830<br>2.08%         1.017.9         26.822<br>2.773         2.7734<br>2.7736         0.915           2         27.736         2.735         0.43         0.431         1.44%         2.9734         2.7736         0.900           30.774         2         2.7759         2.7136         0.900         33.897         33.399         33.441         0.700         0.526         1.71%         3<42.022         41.958         0.434         1.03%         3         33.977         33.942         0.537           23.518         23.518         0.551         2.8274         1         32.662         31.847         1.501         4.71%         1         23.876           23.238         2.32991         0.602         1.82%         2         2.4142         2.3789         2         2.4442         2.4656         0.601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ū         |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
| VILUE         38.577<br>38.66<br>27.361         0.00<br>39.289<br>39.806         0.010<br>39.289<br>39.806         0.830<br>2.08%         0.11<br>32.652         26.822<br>2.773         0.901<br>33.389           2         27.736         0.413         0.413         0.413         1.40%         2         39.417         38.856         2         27.737         27.737         0.900           30.774         2         27.759         27.135         0.761         2.80%         2         33.897         33.397         33.942         0.537           23.518         23.518         23.518         23.518         22.652         2         24.645         0.601           23.328         33.91         24.05         22.2665         2         2.2665         2         2.2665         2           2         2.2994         2.2991         0.602         1.82%         2         2.414         2.3789         2         2.444         2.447 <th>A</th> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A         |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
| VILUS         38.577         38.68         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.341         39.342         33.389         33.389         33.389         33.391         33.391         30.114         30.314         1.03.114         1.21.26.25         33.391         33.391         33.280         22.665         32.2665         32.2665         32.2665         32.2665         32.2665         32.2665         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =         | 2        |        | 40 622  | 0 408 | 1 00%        | 2        |        | 38 258  | 0 466 | 1 22%        | 2        |        | 33 443  | 0 764 |
| VILUE         38.577<br>38.66<br>27.361         0.00<br>39.289<br>39.806         0.010<br>39.289<br>39.806         0.830<br>2.08%         0.11<br>32.652         26.822<br>2.773         0.901<br>33.389           2         27.736         0.413         0.413         0.413         1.40%         2         39.417         38.856         2         27.737         27.737         0.900           30.774         2         27.759         27.135         0.761         2.80%         2         33.897         33.397         33.942         0.537           23.518         23.518         23.518         23.518         22.652         2         24.645         0.601           23.328         33.91         24.05         22.2665         2         2.2665         2         2.2665         2           2         2.2994         2.2991         0.602         1.82%         2         2.414         2.3789         2         2.444         2.447 <th>3</th> <td>~</td> <td></td> <td>40.022</td> <td>0.400</td> <td>1.00/0</td> <td>-</td> <td></td> <td>30.230</td> <td>0.400</td> <td>1.22/0</td> <td>-</td> <td></td> <td>33.443</td> <td>0.704</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3         | ~        |        | 40.022  | 0.400 | 1.00/0       | -        |        | 30.230  | 0.400 | 1.22/0       | -        |        | 33.443  | 0.704 |
| VILUS         38.577         38.68         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.341         39.342         33.389         33.389         33.389         33.391         33.391         30.114         30.314         1.03.114         1.21.26.25         33.391         33.391         33.280         22.665         32.2665         32.2665         32.2665         32.2665         32.2665         32.2665         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E         |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
| VILUS         38.577         38.68         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.289         39.341         39.342         33.389         33.389         33.389         33.391         33.391         30.114         30.314         1.03.114         1.21.26.25         33.391         33.391         33.280         22.665         32.2665         32.2665         32.2665         32.2665         32.2665         32.2665         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a T       | 2        |        | 22 519  | 0 5/9 | 1 60%        | 2        |        | 24 116  | 0 742 | 2 17%        | 2        |        | 22 001  | 0 705 |
| Ling         38.66<br>3.3.86<br>2.2.7.57         38.67<br>2.2.7.57         0.443         1.14%         1         40.914<br>40.914         40.03         0.830         2.08%         1         27.736<br>27.57         0.915           2.6.288<br>2.2.7.759         27.136         0.761         2.80%         2         33.85         3.856         2.2.27.79         27.737         0.900           3.137         3.138         3.0.441         30.761         2.80%         2         33.417         38.844         0.496         1.28%         2         2.5.797         0.900           3.138         3.0.141         30.700         0.526         1.71%         3         41.496         0.434         1.03%         3         3.9977         33.942         0.537           2.3.518         3.0.114         3.0.114         3.2.62         3.2.847         1.215%         2.2.8475         2.2.894         0.2.897         3.3.9977         3.3.942         0.537           2.3.519         3.2.212         3.2.845         0.959         4.02%         3.2.875         2.2.804         0.2.897         3.3.997         3.3.942         0.537         2.3.81         3.2.842         0.537         2.3.81         3.2.842         0.2.807         2.2.804         0.2.807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 5        |        | 32.310  | 0.340 | 1.03%        | 3        |        | 34.110  | 0.742 | 2.1770       | 5        |        | 32.901  | 0.705 |
| Image: bit state         1         39.382         38.873         0.443         1.14%         1         40.914         40.003         0.830         2.08%         1         27.36         0.915           27.361         27.361         27.361         38.555         25.55         25.57         25.57         25.57         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.775         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.777         25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _         |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
| Image: bit in the sector in the sec | j         |          |        | 20.072  | 0 442 | 4.4.40/      |          |        | 40.000  | 0.020 | 2.00%        |          |        | 27 726  | 0.015 |
| Image: bit in the sector in the sec | Ω         | 1        |        | 38.873  | 0.443 | 1.14%        | 1        |        | 40.003  | 0.830 | 2.08%        | 1        |        | 27.736  | 0.915 |
| Image: bit in the sector in the sec | <         |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
| Fig         23.518         23.518         23.518         23.518         23.121         23.121         23.121         23.121         23.121         22.622         22.655         22.655         22.655         22.804         0.288           1         24.944         23.861         0.959         4.02%         1         32.692         31.847         1.501         4.71%         1         23.369         2.804         0.288           32.388         22         32.991         0.602         1.82%         2         24.114         23.785         0.511         2.15%         2         24.444         24.664         0.601           27.284         27.284         2.811         2.817         0.801         2.84%         3         25.372         24.931         0.557         2.23%         3         25.364         24.664         0.626           1         13.519         13.121         0.801         2.84%         3         25.372         24.931         0.557         2.23%         3         25.364         24.664         0.626           1         13.519         13.121         0.345         2.63%         1         77.284         77.022         0.397         1.47%         1         24.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>e</u>  |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
| Image: bit in the sector in the sec | 3         | 2        |        | 27.136  | 0.761 | 2.80%        | 2        |        | 38.844  | 0.496 | 1.28%        | 2        |        | 26.773  | 0.900 |
| Image: bit in the sector in the sec | υ Ξ΄      |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
| Image: bit in the sector in the sec | 2° et     |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
| Vig         23.121         24.944         23.861         0.959         4.02%         1         32.735         4.71%         1         23.136         2.2665         0.288           31.91         24.05%         31.847         1.501         4.71%         1         23.136         2.2604         0.288           2         32.398         2.388         2.388         2.388         2.388         2.388         2.316         2.000         0.601           2         32.994         32.991         0.602         1.82%         2         24.114         23.788         0.511         2.15%         2         24.444         24.665         0.601           2         32.8465         28.187         0.801         2.84%         3         25.315         0.557         2.23%         3         25.354         24.646         0.602           1         1.512         1.3121         0.345         2.63%         1         27.216         2.33%         2.23%         3         23.364         2.4301         1.014           1         1.512         1.3121         0.345         2.63%         1         27.216         2.33%         2.28%         2         2.9592         2.8.611         0.739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u></u> ∞ | 3        |        | 30.700  | 0.526 | 1.71%        | 3        |        | 41.958  | 0.434 | 1.03%        | 3        |        | 33.942  | 0.537 |
| Image: probability of probab |           |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
| Image: Part of the state in the st | Ŀ.        |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
| Image: Part of the state in the st | E         | 1        |        | 23.861  | 0.959 | 4.02%        | 1        |        | 31.847  | 1.501 | 4.71%        | 1        |        | 22.804  | 0.288 |
| Image: Part of the state in the st |           |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
| Image: Part of the state in the st | 14        |          | 32.388 |         |       |              |          | 23.199 |         |       |              |          | 25.077 |         |       |
| Image: Part of the state in the st |           | 2        | 32.994 | 32.991  | 0.602 | 1.82%        | 2        | 24.114 | 23.788  | 0.511 | 2.15%        | 2        | 24.444 | 24.465  | 0.601 |
| Image: Part of the state in the st | >         |          | 27.284 |         |       |              |          | 24.305 |         |       |              |          | 24.158 |         |       |
| Image: Part of the state in the st | o r       |          | 28.811 |         |       |              |          | 25.115 |         |       |              |          | 24.47  |         |       |
| Image: bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 B       | 3        | 28.465 | 28.187  | 0.801 | 2.84%        | 3        | 25.372 | 24.931  | 0.557 | 2.23%        | 3        | 25.364 | 24.664  | 0.626 |
| L         22.947         A         A         Date         Date <thdate< th="">         Date         <thdate< th=""> <thdate< th=""> <thdate< th=""></thdate<></thdate<></thdate<></thdate<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |          | 12.943 |         |       |              |          | 27.216 |         |       |              |          | 23.749 |         |       |
| L         22.947         A         A         Date         Date <thdate< th="">         Date         <thdate< th=""> <thdate< th=""> <thdate< th=""></thdate<></thdate<></thdate<></thdate<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L         |          | 12.901 |         |       |              |          | 26.565 |         |       |              |          | 22.306 |         |       |
| L         22.947         A         A         Date         Date <thdate< th="">         Date         <thdate< th=""> <thdate< th=""> <thdate< th=""></thdate<></thdate<></thdate<></thdate<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4         | 1        | 13.519 | 13.121  | 0.345 | 2.63%        | 1        | 27.284 | 27.022  | 0.397 | 1.47%        | 1        | 24.261 | 23.439  | 1.014 |
| L         22.947         A         A         Date         Date <thdate< th="">         Date         <thdate< th=""> <thdate< th=""> <thdate< th=""></thdate<></thdate<></thdate<></thdate<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T I       |          | 16.336 |         |       |              |          | 31.759 |         |       |              |          | 28.511 |         |       |
| L         22.947         A         A         Date         Date <thdate< th="">         Date         <thdate< th=""> <thdate< th=""> <thdate< th=""></thdate<></thdate<></thdate<></thdate<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PA        |          | 15.624 |         |       |              |          | 30.343 |         |       |              |          | 28.179 |         |       |
| L         22.947         A         A         Date         Date <thdate< th="">         Date         <thdate< th=""> <thdate< th=""> <thdate< th=""></thdate<></thdate<></thdate<></thdate<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5         | 2        | 16.28  | 16.080  | 0.396 | 2.46%        | 2        | 31.065 | 31.056  | 0.708 | 2.28%        | 2        | 29.592 | 28.761  | 0.739 |
| L         22.947         A         A         Date         Date <thdate< th="">         Date         <thdate< th=""> <thdate< th=""> <thdate< th=""></thdate<></thdate<></thdate<></thdate<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3         |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
| L         22.947         A         A         Date         Date <thdate< th="">         Date         <thdate< th=""> <thdate< th=""> <thdate< th=""></thdate<></thdate<></thdate<></thdate<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ę         |          |        |         |       |              |          | 23.691 |         |       |              |          |        |         |       |
| Virtual condition         22.947         22.947         22.947         22.652         20.653         22.443         22.443         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         36.773         35.881         0.829           37.432         38.941         2         22.3734         23.334         2         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437         35.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ре        | 3        |        | 17.894  | 0.192 | 1.07%        | 3        |        | 23.556  | 0.488 | 2.07%        | 3        |        | 23.900  | 0.485 |
| LTP         22.652         0.163         0.71%         1         22.443         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.773         0.000         36.775         26.775 <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |          |        |         |       |              | -        |        |         |       |              | 1        |        |         |       |
| New product with two product withetwo product with two product with two product withe | F         |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4R        | 1        |        | 22.760  | 0.163 | 0.71%        | 1        |        | 21.179  | 1.099 | 5.19%        | 1        |        | 35.881  | 0.829 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5         |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ٩c        |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =         | 2        |        | 37,981  | 0.834 | 2,20%        | 2        |        | 22,826  | 0.534 | 2.34%        | 2        |        | 35,496  | 0.473 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3         | _        |        | 2       |       |              | _        |        |         | 2.507 |              | -        |        |         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tri       |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e<br>B    | 2        |        | 24 276  | 0 060 | 3 0/1%       | 2        |        | 26 636  | 0 504 | 1 89%        | 2        |        | 33 70⊑  | 0 598 |
| 47.053         47.053         43.132         31.329           47.684         48.18         30.504         30.504           1         49.467         48.265         1.041         2.16%         1         49.16         48.932         0.668         1.36%         1         30.311         30.715         0.541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 5        |        | 24.370  | 0.300 | 3.34/0       | 3        |        | 20.030  | 0.304 | 1.03/0       | 3        |        | 33.703  | 0.350 |
| 47.004         48.265         1.041         2.16%         1         49.16         48.932         0.668         1.36%         1         30.504           1         49.467         48.265         1.041         2.16%         1         49.16         48.932         0.668         1.36%         1         30.311         30.715         0.541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RT        |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
| <b>W</b> 1 47.407 40.203 1.041 2.10/0 1 47.10 40.252 0.000 1.30/0 1 30.311 30.715 0.341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲.<br>۲.  | 1        |        | 18 265  | 1 0/1 | 2 16%        | 1        |        | 18 022  | 0 669 | 1 26%        | 1        |        | 30 715  | 0 5/1 |
| T 1/62 2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48        | 1        | 27.663 | 40.203  | 1.041 | 2.1070       | 1        | 49.16  | 40.332  | 0.000 | 1.50%        | 1        | 22.91  | 30.713  | 0.341 |
| <b>4</b> 28.018 46.606 23.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A         |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
| 28.018 46.606 23.66<br>2 28.811 28.164 0.588 2.09% 2 45.498 45.877 0.632 1.38% 2 23.939 23.503 0.532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ll I      | 2        |        | 20 104  | 0 500 | 2 000/       | 2        |        | AE 077  | 0 (22 | 1 390/       |          |        | 22 502  | 0.533 |
| 2 28.811 28.164 0.588 2.09% 2 45.498 45.877 0.632 1.38% 2 23.939 23.503 0.532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ň         | 2        |        | 28.164  | 0.588 | 2.09%        | 2        |        | 45.877  | 0.032 | 1.38%        | 2        |        | 23.503  | 0.532 |
| <b>53.344 46.614 27.457</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ξ.        |          |        |         |       |              |          |        |         |       |              |          |        |         |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | et        | _        |        |         |       |              | _        |        |         |       |              |          |        |         |       |
| <b>A</b> 3 52.595 53.072 0.414 0.78% 3 45.379 45.930 0.628 1.37% 3 28.361 28.724 1.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>L</b>  | 3        | 52.595 | 53.072  | 0.414 | 0.78%        | 3        | 45.379 | 45.930  | 0.628 | 1.3/%        | 3        | 28.361 | 28.724  | 1.482 |

# Table 5. Data for samples soaked in IPA as a solvent from Figures 2 and 4 $\,$