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Abstract 

 This project was focused on the development and testing of several novel pigments that 

exhibit high NIR-reflectance and therefore show potential for use in “cool” coatings. A “cool” 

coating will reflect more solar radiation than other standard coatings, and so a coated structure 

would require less energy to keep cool. Four sets of pigments were synthesized: Co1-xMgxCr2O4 

(teal), Co0.25Mg0.75Cr2-yAlyO4 (blue), Ti1-x-yNixSbyO2 (yellow), and Cr2-xFexO3 (black). NIR and 

TSR values were then measured for these pigments at a Sherwin-Williams research and 

development facility. Results from the testing provided information regarding the optimal 

compositions for the different sets of pigments and indicated that the blue and black pigments 

seemed to show the most promise for use in “cool” coatings. The black pigments were then used 

to mix up simple epoxy coating systems that were used to testing the effectiveness of “cool” 

coatings at the small-scale when compared to coatings made using a control pigment. This coating 

testing was the focus of a second project done in conjunction with this one, by Ashleigh Carpenter, 

and results can be found in the corresponding paper published for that project.  
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Executive Summary 

Problem Statement 

 Energy consumption for the purpose of keeping buildings and structures cool continues to 

rise, and one of the most promising ways to combat this problem is through the use of novel “cool” 

coatings. These coatings would utilize pigments that reflect a much higher portion of near-infrared 

radiation (the part of sunlight that generates the most heat) than other currently available pigments. 

This means less energy (and money) would be required to cool a structure coated in these “cool” 

coatings. In this project, several pigments were synthesized and tested to determine their potential 

for use in “cool” coatings. 

Summary of Results 

 Four sets of pigments – Co1-xMgxCr2O4 (teal), Co0.25Mg0.75Cr2-yAlyO4 (blue),                         

Ti1-x-yNixSbyO2 (yellow), and Cr2-xFexO3 (black) – were synthesized and then tested at a Sherwin-

Williams research and development facility. Results from the first two sets of pigments (teal and 

blue) indicated that higher magnesium content, and especially, higher aluminum content, improved 

solar reflectance. Results from the third set of pigments (yellow) indicated that higher titanium 

content improved solar reflectance. Results from the fourth set of pigments (black) indicated that 

higher iron content improved solar reflectance. The fourth set of pigments (black) was then used 

to make several sample coatings that were used for testing to determine the effectiveness of “cool” 

coatings made with these pigments. This testing was the focus of a second project, done in 

conjunction with this one, and full results can be found in the paper published for that project. 

Conclusions 

 Visually, all the sets of pigments were impressive, and demonstrated the potential for future 

“cool” coatings to exist in a wide range of colors. The most promising test results came from the 
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fourth set of pigments (black), which exhibited surprisingly high levels of solar reflectance 

compared to other darkly colored pigments. The first two sets of pigments (teal and blue) also had 

somewhat promising results, as the testing indicated that similar pigments formulated with high 

aluminum and magnesium contents could possibly be used in “cool” coatings. The third set of 

pigments (yellow) exhibited high levels of solar reflectance but were still outperformed by 

currently available yellow pigments. The testing of the coatings made from the fourth set of 

pigments (black) seemed to indicate that structures coated with these “cool” pigments were heated 

by solar radiation less than structures coated with control pigments. 

Implications 

 This project could very likely serve as a starting point for future developments in the area 

of “cool” coatings, either by utilizing the pigments studied in this project, or other similar 

pigments. Down the road, widespread use of “cool” coatings could make a major impact in energy 

consumption by both residential and commercial buildings and structures, which could benefit 

numerous business sectors and people. More personally, this project has contributed to the 

development of various skills and knowledge including scientific research, laboratory experience, 

pigment design and synthesis, coating formulation, the business side of research, project 

collaboration, time management, and technical writing. 

Recommendations 

 It is recommended that further work and testing be done on the Co0.25Mg0.75Cr2-yAlyO4 

(blue) and Cr2-xFexO3 (black) pigments as these showed the most promise for future use in “cool” 

coatings. Specifically, efforts should be made to improve the coating formulation work that was 

done in this project. Subsequent coatings made from these pigments could then be subjected to 
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more extensive testing to determine the impact of these new pigments on various coating properties 

when compared to current commercially available coatings. 
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Introduction 

 In the world today, energy, and its associated costs, are major concerns to many nations 

and their citizens around the globe. These are not concerning that will disappear anytime soon. 

Energy demands are expected to increase globally over the next few decades due to population 

increases, climate change, and infrastructure expansion in developing countries.1, 2 One of the 

major sources of energy consumption is the building sector. In 2010, the building sector accounted 

for 32% of the global energy demand and was responsible for 30% of energy-related CO2 

emissions. Depending on the building and its location, heating and cooling can contribute to up to 

73% of a building’s total energy consumption.1 This results in a massive amount of money being 

spent to heat and cool buildings worldwide. In 2010 it was estimated that the energy demand for 

cooling both residential and commercial buildings would increase by 750% and 275% respectively 

by the year 2050.2 These concerns have led to a lot of time and money being invested in researching 

new ways to decrease the energy consumption of buildings, and specifically the energy spent on 

heating and cooling them. One of the most promising techniques for doing this, and the one that 

was investigated in this project, was the use of “cool” coatings. 

 Many buildings, both residential and commercial, are painted with some kind of coating, 

often to protect the underlying substrate, for aesthetic reasons, or for other miscellaneous 

purposes.3-8 Most organic coatings, and the pigments they use, do a relatively poor job at reducing 

energy consumption. Instead, these coatings (especially dark ones) absorb solar radiation which 

leads to increased heating of the surface and interior of the structure. In urban areas with many 

buildings in close proximity to each other, this can result in an effect known as urban heat islands 

(UHI’s) which end up requiring huge amounts of energy to cool.9, 10 
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 One way to alleviate this problem is using coatings that exhibit high levels of solar 

reflectance. Doing this has been shown to significantly reducing cooling loads, with only a slight 

heating penalty, so that the net result is a drop in energy consumption by the building.11 In the past, 

most of the organic coatings used for this purpose were a relatively light color (white or off-white). 

These light-colored coatings and their pigments typically absorb much less solar radiation than 

other, darker, coatings. This was demonstrated by field experiments that took place in Florida in 

1997 that found the residential buildings studied saw average air conditioning energy savings of 

19% by switching from dark-colored to white roof coatings.12 However, this adoption of more 

reflective coatings for buildings has been limited in large part due to aesthetic influences. More 

recently, research has expanded around a variety of colored pigments that exhibit much higher 

levels of solar reflectance than traditional colored pigments. The use of coatings containing these 

pigments could reduce the UHI effect and lead to major energy savings worldwide.13 

 Pigments that reflect a relatively large amount of solar radiation are often referred to as 

“cool” pigments, and coatings with these pigments are referred to as “cool” coatings. This is due 

to the idea that buildings coated with these “cool” coatings will experience less sunlight-induced 

heating.14, 15 About 52% of sunlight is made up of near-infrared radiation (NIR), which has a 

wavelength between 780-2500 nm; heat production from NIR is especially high in the 700-1100 

nm range. By increasing the reflectance of solar radiation in this range, the overall heating effect 

from the solar radiation can be reduced.  

This project focused on several “cool” pigments, which were investigated due to the high 

NIR reflectance that they exhibit, and the coatings that could be made using these pigments. The 

goal of this project was to synthesize these pigments, measure their NIR reflectance, use them to 
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design simple coatings, and then to test these coatings to examine their impact on building heating 

caused by NIR. 

Background 

 Two papers were used to help develop the methods of synthesis, coating development, and 

testing that would be used in this project. The first was published in 2010 by Giable George, V.S. 

Vishnu, and M.L.P. Reddy, and it focused on the inorganic pigments Y6-xSixMoO12-δ and Y6-

xPrxMoO12-δ.
15 The second paper was published in 2016 by Weiwei Bao et al., and it focused on 

the inorganic pigment Co0.5Mg0.5Al2-xFexO4.
14 Two of the pigments synthesized in this project, 

Co1-xMgxCr2O4 and Co0.25Mg0.75Cr2-yAlyO4, were partly inspired by the paper from Weiwei Bao 

et al., and by previous work done by Dr. Qixin Zhou and her group at the University of Akron in 

conjunction with Sherwin-Williams. Some of the processes outlined in these two papers for the 

pigment synthesis and testing were mimicked in this project. The results from these two papers 

also demonstrated that there is potential for pigments made from certain combinations of metal 

oxides to be used in “cool” coatings. 

Experimental Methods 

Pigment Synthesis 

 The first steps in this project were concerned with synthesizing the pigments. The first set 

of pigments synthesized was Co1-xMgxCr2O4 (x = 0.00, 0.25, 0.50, 0.75, and 1.00). This set of 

pigments was designed to be teal in color. To make these pigments, a Pechini-type sol-gel method 

was used, as described in the paper by Weiwei Bao et al.14 Citric acid, cobalt nitrate (Co(NO3)2 • 

6H2O), chromium nitrate (Cr(NO3)3 • 9H2O), and magnesium nitrate (Mg(NO3)2 • 6H2O) were 

dissolved in a round-bottom flask filled with 150 mL of deionized water. Specific amounts for the 

reagents can be seen in Table 1.  
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Table 1: Reagent amounts used for the synthesis of Co1-xMgxCr2O4. 

 

x-

value 

 

Citric Acid 

(g) 

Co(NO3)2 • 

6H2O 

(g) 

Cr(NO3)3 • 

9H2O 

(g) 

Mg(NO3)2 • 

6H2O 

(g) 

Ethylene 

Glycol 

(mL) 

0.00 56.738 8.731 24.009 0.000 10 

0.25 56.738 6.545 24.009 1.921 10 

0.50 56.738 4.366 24.009 3.846 10 

0.75 56.738 2.183 24.009 5.769 10 

1.00 56.738 0.000 24.009 7.692 10 

 

The solids were dissolved using a magnetic stir bar and plate at 300 rpm, and then the flask 

was submerged in an oil bath at 80°C for 1 hour, while still being stirred. After the hour, ethylene 

glycol was added to the flask and stirring/heating continued for another hour. The solution was 

then transferred to a beaker, which was placed inside a furnace at 120°C for 12 hours, followed by 

350°C for 2 hours. The result was a hard and brittle puck, mostly homogenous, that was then hand-

ground to a fine powder by using a mortar and pestle. The powder was then placed inside a high-

temperature furnace at 900°C for 6 hours with a heating rate of 10°C/min.  

The second set of pigments synthesized was Co0.25Mg0.75Cr2-yAlyO4 (y = 0.5, 1.0, 1.5, and 

2.0). This set of pigments was designed to be blue in color. The same process was followed as with 

the Co1-xMgxCr2O4 pigments, with the main difference being the addition of aluminum nitrate 

(Al(NO3)3 • 9H2O). Specific amounts for the reagents can be seen in Table 2. 
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Table 2: Reagent amounts used for the synthesis of Co0.25Mg0.75Cr2-yAlyO4. 

 

y-

value 

Citric 

Acid 

(g) 

Co(NO3)2 • 

6H2O 

(g) 

Cr(NO3)3 • 

9H2O 

(g) 

Mg(NO3)2 • 

6H2O 

(g) 

Al(NO3)3 • 

9H2O 

(g) 

Ethylene 

Glycol 

(mL) 

0.5 56.738 2.183 18.007 5.769 5.627 10 

1.0 56.738 2.183 12.005 5.769 11.254 10 

1.5 56.738 2.183 6.002 5.769 16.881 10 

2.0 56.738 2.183 0.000 5.769 22.508 10 

 

The third set of pigments to be synthesized was Ti1-x-yNixSbyO2 (x = 0.03 and y = 0.02,       

x = 0.06 and y = 0.04, x = 0.09 and y = 0.06, and x = 0.12 and y = 0.08). This set of pigments was 

designed to be yellow in color. Due to the different reagents being used, and for the sake of time, 

a different process was followed for this set of pigments. The reagents used were titanium dioxide 

(TiO2), antimony trioxide (Sb2O3), ammonium chloride (NH4Cl), boric acid (H3BO3), and a basic 

nickel carbonate (Ni2CO3 • 2Ni(OH)2 • 4H2O), all of which were used as powders. The reagents 

were weighed out and then mixed until homogenous by using a repurposed coffee grinder. Specific 

amounts for the reagents can be seen in Table 3. As with the previous pigments, the powders were 

then placed inside a high-temperature furnace at 900°C for 6 hours with a heating rate of 10°C/min. 
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Table 3: Reagent amounts used for the synthesis of Ti1-x-yNixSbyO2. 

x-

value 

y-

value 

TiO2 

(g) 

Sb2O3 

(g) 

NH4Cl 

(g) 

H3BO3 

(g) 

Ni2CO3 • 2Ni(OH)2 • 4H2O 

(g) 

0.03 0.02 23.030 0.885 0.125 0.125 1.140 

0.06 0.04 21.175 1.720 0.125 0.125 2.215 

0.09 0.06 18.890 2.410 0.120 0.120 3.135 

0.12 0.08 17.780 3.245 0.125 0.125 4.180 

 

The fourth and final set of pigments to be synthesized was Cr2-xFexO3 (x = 0.3, 0.6, 0.9, 

1.2, 1.5, and 1.8). This set of pigments was designed to be black in color. The reagents used were 

chromium (III) oxide (Cr2O3), iron(III) oxide (Fe2O3), titanium dioxide (TiO2), and boric acid 

(H3BO3). As with the Ti1-x-yNixSbyO2 pigments, the reagents were weighed out and then mixed 

until homogenous by using a repurposed coffee grinder. Specific amounts for the reagents can be 

seen in Table 4. 

Table 4: Reagent amounts used for the synthesis of Cr2-xFexO3. 

x-value Cr2O3 (g) Fe2O3 (g) TiO2 (g) H3BO3 (g) 

0.3 20.839 3.871 0.124 0.124 

0.6 17.162 7.742 0.125 0.125 

0.9 13.063 11.250 0.125 0.125 

1.2 9.500 15.000 0.123 0.123 

1.5 5.938 18.750 0.123 0.123 

1.8 2.375 22.500 0.124 0.124 
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Pigment Testing 

 All four of the sets of pigments were sent to be tested at a Sherwin-Williams R&D facility. 

Initial testing was focused on measuring total solar reflectance (TSR) and NIR values for the 

pigments. Due to intellectual property restrictions imposed by Sherwin-Williams, further 

information regarding the testing of these samples cannot be made public. 

Coating Design 

 Based on feedback from Sherwin-Williams after the pigment testing, it was decided that 

only coatings made using the Cr2-xFexO3 (black) pigments would be tested for the time being. A 

common epoxy resin (EPON™ Resin 828) was chosen to be the base of the coatings. For each of 

the six Cr2-xFexO3 pigments, 4 grams of pigment, 4 grams of resin, and 2 grams of acetone were 

combined. The pigment-to-binder ratio was chosen as 1:1 based on the procedure followed in the 

paper by Giable George, V.S. Vishnu, and M.L.P. Reddy. The acetone was then added to thin 

down the coating to a more workable viscosity. These coating samples were prepared in 

scintillation vials and shaken by hand to mix. 

Prior to application, 5.54 grams of the hardener (EPIKURE™ Curing Agent 3164) was 

added to each of the coating samples to result in an AHEW:EEW ratio of 1:1. The vials were then 

shaken by hand to mix and drawn down onto aluminum Q-panels using a 120 µm (~4.7 mils) 

drawdown bar. The panels were cleaned with acetone and blown clear of dust prior to application 

of the coatings. After the first few drawdowns, there seemed to be an issue with bubbles on some 

of the panels, and so 1 drop each of BYK-141 (defoamer) and BYK-333 (wetting agent) were 

added to each coating sample; this seemed to resolve the issue. Five repeats were made for each 

sample.  
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The x = 1.5 and 1.8 pigment samples had issues with drawdowns at 120 µm. It appeared 

that the pigment particles were larger than 120 µm and so the resulting drawdowns had little-to-

no pigment left behind on the panels. It was unclear whether this phenomenon was due to 

differences in pigment formulation, a pigment dispersion issue, or caused by some other factor. To 

correct this issue, these coating samples were applied using a 150 µm (~6 mils) drawdown bar 

instead of the 120 µm bar. 

Control panels were drawn down using a control coating that was made following the exact 

same procedure as was used for all the sample pigments. The black control pigment was pure 

Fe3O4. The control coating was drawn down at both 120 µm and 150 µm so that accurate 

comparisons could be made between all the samples. 

The panels were left to dry in a fume hood overnight before being baked in an oven at 

120°C for 2 hours on the following day. After drying, numerous defects were revealed on some of 

the panels. When it came to test, only panels with minimal defects were used.  

Coating Testing 

 Testing the effectiveness of these “cool” pigments on preventing heating caused by solar 

radiation was the objective of a different project that accompanies the one presented in this paper. 

A report published in 2020 by Ashleigh Carpenter focuses on the testing and results that follow 

this project. 

 For the testing, small “houses” were made out of polystyrene foam, and these “houses” 

were heated by lamps designed to mimic solar radiation. The coating panels made from the Cr2-

xFexO3 (black) pigments were placed on top of the “houses”, and temperature data from inside the 

“houses” was recorded over time. In this way, the effectiveness of the “cool” pigments – compared 
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to the control pigment – at preventing internal heating of the structures was evaluated. For more 

information regarding this testing, see the report by Ashleigh Carpenter. 

Data and Results 

Pigment Results 

All four sets of the synthesized pigments exhibited good color and homogeneity. For the 

first set of pigments, Cr2-xFexO3 (black), the powder ranged from dark grey (x = 0.00) to light grey 

(x = 1.00) prior to being placed in the high-temperature furnace. Upon removal from the furnace, 

the powder had changed color from grey to teal, with each x-value having a distinct color. Pictures 

of the powder before and after the high-temperature furnace can be seen in Figure 1. 

 

Figure 1: Pictures of the Co1-xMgxCr2O4 pigments before (top) and after (bottom) being put in the 

high-temperature furnace. The pigments are arranged with x = 0.00 on the far left and x = 1.00 on 

the far right. 

For the second set of pigments, Co0.25Mg0.75Cr2-yAlyO4 (blue), the powder ranged from grey 

(y = 0.5) to dull yellow (y = 2.0) prior to being placed in the high-temperature furnace. Upon 

removal from the furnace, the powder had changed into an assortment of blues, with y = 0.5 (the 

least aluminum and therefore showing the most resemblance to the pigments in Figure 1) appearing 
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as a teal color, all the way to y = 2.0 appearing as a bright blue. Pictures of the powder before and 

after the high-temperature furnace can be seen in Figure 2. 

  

Figure 2: Pictures of the Co0.25Mg0.75Cr2-yAlyO4 pigments before (top) and after (bottom) being put 

in the high-temperature furnace. The pigments are arranged with y = 0.5 on the far left and y = 2.0 

on the far right. 

For the third set of pigments, Ti1-x-yNixSbyO2 (yellow), all of the powders appeared very 

light green in color prior to being placed in the high-temperature furnace. Upon removal from the 

furnace, the powders had changed color from light green to yellow, and it was difficult to 

distinguish color differences between the samples. Pictures of the powder before and after the 

high-temperature furnace can be seen in Figure 3. 
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Figure 3: Pictures of the Ti1-x-yNixSbyO2 pigments before (top) and after (bottom) being put in the 

high-temperature furnace. The pigments are arranged with x = 0.12 and y = 0.08 on the far left and 

x = 0.03 and y = 0.02 on the far right. 

For the fourth set of pigments, Cr2-xFexO3 (black), the powders varied in color from green 

(x = 0.3) to red (x = 1.8) prior to being placed in the high-temperature furnace. Upon removal from 

the furnace, the powders had changed color from red/green to dark grey, and it was somewhat 

difficult to distinguish color differences between the samples. Pictures of the powder before and 

after the high-temperature furnace can be seen in Figure 4. 

  

Figure 4: Pictures of the Cr2-xFexO3 pigments before (top) and after (bottom) being put in the high-

temperature furnace. The pigments are arranged with x = 0.3 on the far left and x = 1.8 on the far 

right. 
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Due to intellectual property restrictions imposed by Sherwin-Williams, only a small 

amount of information regarding the results of TSR and NIR testing can be made public. Exact 

numbers and figures will not be presented in this report, but the results will be discussed in a 

limited fashion in the Discussion and Analysis section below. 

Coating Results 

Full data and results for the coating testing are given in the report by Ashleigh Carpenter 

and so will not be presented here. However, the results will be briefly discussed in the Discussion 

and Analysis section below. 

Discussion and Analysis 

Visually, the colors of the four sets of pigments show promise at potentially providing a 

wider color-range for “cool” coatings than that of white or off-white. Maybe most notably, the 

idea that a dark grey or black pigment, such as Cr2-xFexO3, could be used in a “cool” coating opens 

the door for numerous color possibilities. 

For the Co1-xMgxCr2O4 (teal) pigments, NIR reflectance showed slight increases with 

increasing magnesium content (increasing x-values), but the NIR reflectance values for all of the 

samples remained relatively low without any aluminum being present. The Co0.25Mg0.75Cr2-yAlyO4 

(blue) pigments all exhibited higher NIR reflectance values than the Co1-xMgxCr2O4 (teal) 

pigments, and NIR reflectance values increased with increasing aluminum content (increasing y-

values). These results indicate that some amount of aluminum is necessary to obtain high levels of 

NIR reflectance, and that higher levels of magnesium relative to cobalt seem to improve NIR 

reflectance. Based on this, future testing could experiment with keeping aluminum and magnesium 

levels high while adjusting cobalt/chromium levels, or even while adding other reagents into the 
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pigment. Also, for these pigments, the differences in color were visually significant, and work 

could be done to determine the optimal color desired for different “cool” coatings, while 

maintaining a high level of NIR reflectance. In a laboratory setting, using the sol-gel process to 

synthesize these pigments was much more time-consuming than the method used for the other 

pigments; work could be done to see if using a different method to synthesize these pigments was 

able to speed up the process without sacrificing the resulting quality of pigment. 

 The Ti1-x-yNixSbyO2 (yellow) pigments exhibited NIR reflectance values much higher than 

those of the Co1-xMgxCr2O4 (teal) or Co0.25Mg0.75Cr2-yAlyO4 (blue) pigments, but the values did not 

surpass those of currently available NIR-reflective yellow pigments. Because of this, this set of 

pigments does not show as much promise for further use as the other pigments do. NIR reflectance 

values showed slight increases with increasing titanium content (decreasing x and y values). If 

other, similar pigments are tested in the future, these results could be used to justify using a high 

titanium content in the formulation of those pigments. 

 The Cr2-xFexO3 (black) pigments exhibited relatively high NIR reflectance values 

compared to other commercial black pigments, and NIR reflectance tended to increase with 

increasing iron content (increasing x-values). This set of pigments seems to show the most promise 

out of all the pigments tested, and future work will likely be done to further improve NIR 

reflectance.  

Results from testing the panels made with the Cr2-xFexO3 (black) pigments, and the control 

panels made with Fe3O4, indicate that the pigments synthesized in this project were successful at 

preventing heating inside the test “houses”. The testing demonstrated a surprisingly low level of 

repeatability; however, a slight trend was observed indicating that increasing x-values seemed to 

increase the effectiveness at preventing heating. These results match the results from the NIR 
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reflectance testing. Although, as these results were not completely clear, it is possible that with the 

setup used for the testing, standard noise/variation somewhat masked the underlying differences 

between the sample coatings. For more information regarding these results, see the report by 

Ashleigh Carpenter. 

Conclusions and Recommendations 

The goal of this project was to research several sets of pigments and their potential to be 

used in “cool” coatings. First, four sets of pigments were synthesized: Co1-xMgxCr2O4 (teal), 

Co0.25Mg0.75Cr2-yAlyO4 (blue), Ti1-x-yNixSbyO2 (yellow), and Cr2-xFexO3 (black). The first two sets 

of pigments were synthesized using a Pechini-type sol-gel method followed by baking in a high-

temperature furnace. The second two sets of pigments were synthesized by blending dry reagents 

together and then baking the mixture in the high-temperature furnace.  

All the pigments were then tested by a Sherwin-Williams research and development facility 

to measure TSR and NIR data. NIR results for the first two sets of pigments, Co1-xMgxCr2O4 (teal) 

and Co0.25Mg0.75Cr2-yAlyO4 (blue), revealed that NIR reflectance tended to increase with 

magnesium and aluminum content. The Co0.25Mg0.75Cr2-yAlyO4 (blue) pigments show promise for 

use in “cool” coatings and will likely be the subject of future testing. NIR results for the third set 

of pigments, Ti1-x-yNixSbyO2 (yellow), revealed that NIR reflectance tended to increase with 

increasing titanium content, and these pigments exhibited relatively high NIR reflectance, but were 

still outperformed by similar pigments already commercially available. NIR results for the fourth 

set of pigments, Cr2-xFexO3 (black), revealed that NIR reflectance tended to increase with 

increasing iron content, and this set of pigments showed the most promise out of the group for use 

in “cool” coatings. 
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Sample coatings were then made from the Cr2-xFexO3 (black) pigments by mixing the 

pigments in a 2:2:1 ratio by volume with epoxy resin and acetone respectively. Very small amounts 

of defoamer and wetting agents were also added to the coatings. Hardener was added in a 1:1 

AHEW:EEW ratio, and the coatings were drawn down onto aluminum Q-panels using either a 120 

µm or 150 µm drawdown bar. After curing in an oven, these sample panels were tested against 

control panels using an Fe3O4 pigment to determine whether the Cr2-xFexO3 (black) pigments 

would work in a small-scale setup designed to mimic the heating of buildings by solar ration. The 

panel testing was the focus of another project done in conjunction with this one, and information 

regarding the testing and results can be found in a paper published in 2020 by Ashleigh Carpenter. 

It is recommended that further work be done to improve upon the coating formulation in 

this project. More extensive testing could then be done comparing these novel “cool” pigments to 

other commercially available pigments and their impact on various coating properties (e.g. color, 

stability, corrosion protection, etc.). The Cr2-xFexO3 (black) pigments seemed to show the most 

promise out of all the pigments tested, and so this set of pigments should be a major focus moving 

forward. More work should also be done on the Co0.25Mg0.75Cr2-yAlyO4 (blue) pigments, and on 

any pigments like these that may also exhibit high levels of NIR reflectance. 

Design Constraints 

Intellectual Property 

 As mentioned previously, intellectual property restrictions played a significant role in this 

project. Because this project was carried out in conjunction with Sherwin-Williams, any 

information regarding the testing methods and the subsequent results has been carefully guarded. 

This makes it difficult to give readers a complete understanding of the results of this project, which 

much time and effort went into reaching. However, these restrictions are important as they play a 
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major role in incentivizing experimental projects such as this one. Without intellectual property 

restrictions, this project and any project similar to it would likely not be carried out, at least to the 

same extent as they have been. 

Safety 

 Safety is a major focus of any scientific endeavor, and for good reason. In the process of 

working to improve or expand on previous knowledge and technology, it is important to make sure 

the result is not more harm than good. In this project, proper personal protective equipment (PPE) 

was worn at all times and general laboratory safety techniques were used. This included 

maintaining proper storage of chemical reagents and products, and carrying out laboratory work 

under a fume hood whenever possible. None of the aspects of this project (the process for 

synthesizing the pigments, the pigments themselves, coatings made from the pigments, and testing 

procedures for those coatings) seem to be any more hazardous to the environment or dangerous to 

personal safety than other procedures/products already common in the coatings industry.  

Function 

 When carrying out projects such as this one, it is important not to lose sight of the final 

product that the new technology could be useful for. All of the pigments synthesized and tested in 

this project are done so with the idea that they have potential to be used in novel “cool” coatings. 

These coatings could be used for both commercial and residential buildings to save money spent 

on cooling, and could lead to a decrease in energy demands regionally, or even globally. The early 

testing to evaluate these pigments was carried out with these goals in mind. If any of the pigments 

fail to accomplish this primary objective to some reasonable extent, more time and money spent 

on those pigments would likely end up wasted. 
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